日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=(x∈R).
(1)當f(1)=1時,求函數f(x)的單調區間;
(2)設關于x的方程f(x)=的兩個實根為x1,x2,且-1≤a≤1,求|x1-x2|的最大值;
(3)在(2)的條件下,若對于[-1,1]上的任意實數t,不等式m2+tm+1≥|x1-x2|恒成立,求實數m的取值范圍.
【答案】分析:(1)先由f(1)=1解得a,用導數法研究單調性;(2)方程f(x)=可化為x2-ax-2=0,△=a2+8>0,可知方程x2-ax-2=0有兩不同的實根x1,x2,再由韋達定理建立|x1-x2|==模型求解;(3)若不等式m2+tm+1≥|x1-x2|恒成立,
結合(2)可轉化為m2+tm-2≥0,t∈[-1,1]都成立,再求g(t)=m2+tm-2最小值即可.
解答:解:(1)由f(1)=1得a=-1,
f′(x)===≥0
-2≤x≤1,所以f(x)的減區間是(-∞,-2]和[1,+∞),增區間是[-2,1](5分)
(2)方程f(x)=可化為x2-ax-2=0,△=a2+8>0
∴x2-ax-2=0有兩不同的實根x1,x2
則x1+x2=a,x1x2=-2
∴|x1-x2|==
∵-1≤a≤1,∴當a=±1時,
∴|x1-x2|max==3
(3)若不等式m2+tm+1≥|x1-x2|恒成立,
由(2)可得m2+tm+1≥3,對t∈[-1,1]都成立m2+tm-2≥0,t∈[-1,1],
設g(t)=m2+tm-2
若使t∈[-1,1]時g(t)≥0都成立,

解得:m≥2或m≤-2,所以m的取值范圍是m≥2或m≤-2
點評:本題主要考查導數法研究單調性,一元二次方程根的問題及不等式恒成立問題,同時考查轉化化歸的思想.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數f(x)的最小正周期;
(2)若函數y=f(2x+
π
4
)
的圖象關于直線x=
π
6
對稱,求φ的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)為定義在R上的奇函數,且當x>0時,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時f(x)的表達式;
(2)若關于x的方程f(x)-a=o有解,求實數a的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調遞增區間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區間(1,3)上總不單調,求實數m的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線3x-y+2=0平行,若數列{
1
f(n)
}
的前n項和為Sn,則S2010的值為(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)是定義在區間(-1,1)上的奇函數,且對于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實數a的取值范圍是
 

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: xnxx 美女19 | 欧美日本一区视频免费 | 国产精品久久二区 | 午夜www | 亚洲国产精品久久久男人的天堂 | 欧美不卡视频一区发布 | 国产美女网站 | 国产中文字幕在线观看 | 成人国产精品久久久 | 欧美日韩在线观看中文字幕 | 一区二区三区四区国产 | 欧美小视频在线观看 | 成人欧美 | 一级在线播放 | 国产精品嫩草影院88av漫画 | 国产精品一区在线观看 | 天天插天天干 | 成人免费一区二区三区视频网站 | 久久久久成人精品 | 久久精品欧美一区二区三区不卡 | 性色av网| 日韩一区二区在线免费观看 | 人人看人人射 | 欧美日韩精品一区二区三区 | 日韩午夜精品视频 | 成人1区2区 | 亚洲福利影院 | 精品国产91乱码一区二区三区 | 国产 欧美 日韩 一区 | 亚洲中国精品精华液 | 国产精品毛片一区二区三区 | 国产精品一区二区三区99 | 涩涩视频网站在线观看 | 亚洲精品一区在线观看 | 精品国产一级毛片 | 玖玖操| 99精品网| 北条麻妃99精品青青久久 | 黄a免费 | 免费黄看片 | 国产福利一区二区三区四区 |