幾何體的三視圖如圖,
與
交于點
,
分別是直線
的中點,
(I)面
;
(II)面
;
(Ⅲ)求二面角的平面角的余弦值.
科目:高中數(shù)學 來源: 題型:解答題
如圖1,,
,過動點A作
,垂足
在線段
上且異于點
,連接
,沿
將△
折起,使
(如圖2所示).
(1)當的長為多少時,三棱錐
的體積最大;
(2)當三棱錐的體積最大時,設點
,
分別為棱
、
的中點,試在棱
上確定一點
,使得
,并求
與平面
所成角的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分12分)如圖,在底面為直角梯形的四棱錐中
,
平面
,
,
,
.
(Ⅰ)求證:;
(Ⅱ)求直線與平面
所成的角;
(Ⅲ)設點在棱
上,
,若
∥平面
,求
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)如圖,三棱柱的各棱長均為2,側面
底面
,側棱
與底面
所成的角為
.
(1) 求直線與底面
所成的角;
(2) 在線段上是否存在點
,使得平面
平面
?若存在,求出
的長;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知梯形ABCD中,AD∥BC,∠ABC ="∠BAD" =,AB=BC=2AD=4,
E、F分別是AB、CD上的點,且EF∥BC.設AE =,G是BC的中點.
沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF (如圖).
(1)當=2時,求證:BD⊥EG ;
(2)若以F、B、C、D為頂點的三棱錐的體積記為,求
的最大值;
(3)當取得最大值時,求二面角D-BF-E的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知△BCD中,∠BCD=90°,AB⊥平面BCD,E、F分別是AC、AD上的動點,且
求證:不論λ為何值,總有平面BEF⊥平面ABC
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分10分)
如圖,四棱錐P-ABCD中,PA⊥平面ABCD,PA=AB=BC=2,E為PA的中點,過E作平行于底面的平面EFGH,分別與另外三條側棱相交于點F、G、H. 已知底面ABCD為直角梯形,AD∥BC,AB⊥AD,∠BCD=135°.
(1)求異面直線AF與BG所成的角的大小;
(2)求平面APB與平面CPD所成的銳二面角的余弦值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com