【題目】算法的三種基本結構是( )
A. 順序結構、模塊結構、條件結構 B. 順序結構、循環結構、模塊結構
C. 順序結構、條件結構、循環結構 D. 模塊結構、條件結構、循環結構
科目:高中數學 來源: 題型:
【題目】已知圓與圓
:
關于直線
對稱,且點
在圓
上.
(1)判斷圓與圓
的位置關系;
(2)設為圓
上任意一點,
,
,
三點不共線,
為
的平分線,且交
于
. 求證:
與
的面積之比為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線,半徑為2的圓
與
相切,圓心
在
軸上且在直線
的右上方.
(1)求圓的方程;
(2)若直線過點且與圓
交于
兩點(
在
軸上方,
在
軸下方),問在
軸正半軸上是否存在定點
,使得
軸平分
?若存在,請求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點
,直線
,設圓
的半徑為
,圓心在
上.
(Ⅰ)若圓心也在直線
上,過點
作圓
的切線,求切線的方程;
(Ⅱ)若圓上存在點
,使
,求圓心
的橫坐標
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個年級有16個班級,每個班級學生從1到50號編排,為了交流學習經驗,要求每班編號為14的同學留下進行交流,這里運用的是 ( )
A. 分層抽樣 B. 抽簽法 C. 系統抽樣 D. 隨機數表法
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數是定義域為R的奇函數.
(1)求的值;
(2)若,試判斷
的單調性(不需證明),并求使不等式
恒成立的t的取值范圍;
(3)若,
,求
在
上的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若用斜二測畫法把一個高為10 cm的圓柱的底面畫在x′O′y′平面上,則該圓柱的高應畫成( )
A. 平行于z′軸且長度為10 cm
B. 平行于z′軸且長度為5 cm
C. 與z′軸成45°且長度為10 cm
D. 與z′軸成45°且長度為5 cm
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com