日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=log
12
(sinx-cosx).
(1)求它的定義域和值域;
(2)判定它的奇偶性;
(3)判定它的周期性,若是周期函數,求出它的最小正周期.
分析:(1)由sinx-cosx>0可得,
2
sin(x-
π
4
)>0,故有 2kπ+0<x-
π
4
<2kπ+π,k∈z,由此求得x的范圍,即可求得函數的定義域.再根據條件及正弦函數的有界性求得值域.
(2)由于函數的定義域不關于原點不對稱,可得f(x)是非奇非偶函數.
(3)根據f(x+2π)=f(x),可得函數的周期性.
解答:解:(1)由sinx-cosx>0可得,
2
sin(x-
π
4
)>0,
∴2kπ+0<x-
π
4
<2kπ+π,k∈z,即2kπ+
π
4
<x<2kπ+
4
,k∈z.
∴定義域為 (2kπ+
π
4
,2kπ+
4
),(k∈Z).
2
sin (x-
π
4
)∈(0,
2
],∴值域為 (0,
2
].
(2)∵定義域不關于原點不對稱,∴f(x)是非奇非偶函數.
(3)∵f(x+2π)=log
1
2
[sin(x+2π)-cos(x+2π)]=log
1
2
(sinx-cosx)=f(x),
∴已知函數是周期函數,且最小正周期T=2π.
點評:本題主要考查復合三角函數的單調性、奇偶性和周期性,以及定義域和值域,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=2x-2+ae-x(a∈R)
(1)若曲線y=f(x)在點(1,f(1))處的切線平行于x軸,求a的值;
(2)當a=1時,若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點,求k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x2+2|lnx-1|.
(1)求函數y=f(x)的最小值;
(2)證明:對任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對于函數f(x)圖象上的不同兩點A(x1,y1),B(x2,y2)(x1<x2),如果在函數f(x)圖象上存在點M(x0,y0)(其中x0∈(x1,x2))使得點M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當x0=
x1+x2
2
時,又稱直線AB存在“中值伴侶切線”.試問:當x≥e時,對于函數f(x)圖象上不同兩點A、B,直線AB是否存在“中值伴侶切線”?證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數列{
1
f(n)
}的前n項和為Sn,則S2012的值為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=xlnx
(Ⅰ)求函數f(x)的極值點;
(Ⅱ)若直線l過點(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實數a的不同取值,寫出該函數的單調增區間;
(2)已知當x>0時,函數在(0,
6
)上單調遞減,在(
6
,+∞)上單調遞增,求a的值并寫出函數的解析式;
(3)記(2)中的函數圖象為曲線C,試問是否存在經過原點的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久久少妇免费看 | 热久久久久 | 日韩欧美一区二区三区免费观看 | 日韩在线视频网站 | 日韩视频在线观看一区 | 亚洲精品9999 | 欧美三区视频 | 国产精品欧美一区二区三区不卡 | 91精品国产综合久久久蜜臀图片 | 久久精品久 | 国产精品视频播放 | 免费av一区 | 成人毛片在线观看 | 国产视频一区二区在线 | 亚洲高清视频二区 | 亚洲一区二区三区久久 | 国产精品美女视频一区二区三区 | 日本一二区视频 | 欧美日韩久久精品 | 国产区在线| 国产精品视频免费 | 午夜精品一区二区三区免费视频 | 综合久久综合久久 | 91短视频版在线观看免费大全 | 成人精品在线播放 | 91精品国产自产精品男人的天堂 | 日韩激情综合 | 精品一区二区久久久久久久网站 | 欧美成人手机在线视频 | 日日做夜夜操 | 国产电影一区二区 | 美女诱惑av | 青青草免费在线 | 日韩精品av一区二区三区 | 日日精品 | 久久久久999 | 国产传媒在线视频 | 亚洲精品一区二区网址 | 欧美视频在线免费 | 午夜免费| 丁香午夜|