【題目】如圖,圓形紙片的圓心為O,半徑為5 cm,該紙片上的等邊三角形ABC的中心為O。D、E、F為圓O上的點,△DBC,△ECA,△FAB分別是以BC,CA,AB為底邊的等腰三角形。沿虛線剪開后,分別以BC,CA,AB為折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱錐。當△ABC的邊長變化時,所得三棱錐體積(單位:cm3)的最大值為_______。
科目:高中數學 來源: 題型:
【題目】【2017四川宜賓二診】如甲圖所示,在矩形中,
,
,
是
的中點,將
沿
折起到
位置,使平面
平面
,得到乙圖所示的四棱錐
.
(Ⅰ)求證: 平面
;
(Ⅱ)求二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知A(x1 , y1),B(x2 , y2)是函數f(x)= 的圖象上的任意兩點(可以重合),點M在直線x=
上,且
=
.
(1)求x1+x2的值及y1+y2的值;
(2)已知S1=0,當n≥2時,Sn=f( )+f(
)+f(
)+…+f(
),求Sn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】把函數f(x)=sin(2x+φ)(|φ|< )的圖象上的所有點向左平移
個單位長度,得到函數y=g(x)的圖象,且g(﹣x)=g(x),則( )
A.y=g(x)在(0, )單調遞增,其圖象關于直線x=
對稱
B.y=g(x)在(0, )單調遞增,其圖象關于直線x=
對稱
C.y=g(x)在(0, )單調遞減,其圖象關于直線x=
對稱
D.y=g(x)在(0, )單調遞減,其圖象關于直線x=
對稱
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量 =(4,3),
=(2,﹣1),O為坐標原點,P是直線AB上一點.
(1)若點P是線段AB的中點,求向量 與向量
夾角θ的余弦值;
(2)若點P在線段AB的延長線上,且| |=
|
|,求點P的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知在四棱錐P﹣ABCD中,底面ABCD是平行四邊形,PA⊥平面ABCD,PA= ,AB=1.AD=2.∠BAD=120°,E,F,G,H分別是BC,PB,PC,AD的中點.
(Ⅰ)求證:PH∥平面GED;
(Ⅱ)過點F作平面α,使ED∥平面α,當平面α⊥平面EDG時,設PA與平面α交于點Q,求PQ的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】海水養殖場進行某水產品的新、舊網箱養殖方法的產量對比,收獲時各隨機抽取了100個網箱,測量各箱水產品的產量(單位:kg), 其頻率分布直方圖如下:
(1)記A表示事件“舊養殖法的箱產量低于50 kg”,估計A的概率;
(2)填寫下面列聯表,并根據列聯表判斷是否有99%的把握認為箱產量與養殖方法有關:
箱產量<50 kg | 箱產量≥50 kg | |
舊養殖法 | ||
新養殖法 |
(3)根據箱產量的頻率分布直方圖,對這兩種養殖方法的優劣進行比較.
附:
P( | 0.050 0.010 0.001 |
k | 3.841 6.635 10.828 |
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com