已知函數f(x)=-aln x++x(a≠0),
(1)若曲線y=f(x)在點(1,f(1))處的切線與直線x-2y=0垂直,求實數a的值;
(2)討論函數f(x)的單調性.
科目:高中數學 來源: 題型:解答題
已知函數
(1)當時,求函數
的單調遞增區間;
(2)記函數的圖象為曲線
,設點
是曲線
上的不同兩點.如果在曲線
上存在點
,使得:①
;②曲線
在點
處的切線平行于直線
,則稱函數
存在“中值相依切線”,試問:函數
是否存在“中值相依切線”,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設f(x)=a(x-5)2+6ln x,其中a∈R,曲線y=f(x)在點(1,f(1))處的切線與y軸相交于點(0,6).
(1)確定a的值;
(2)求函數f(x)的單調區間與極值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數f(x)=aln x-ax-3(a∈R).
(1)若a=-1,求函數f(x)的單調區間;
(2)若函數y=f(x)的圖象在點(2,f(2))處的切線的傾斜角為45°,對于任意的t∈[1,2],函數g(x)=x3+x2 (f′(x)是f(x)的導函數)在區間(t,3)上總不是單調函數,求m的取值范圍;
(3)求證:×…×
<
(n≥2,n∈N*)
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數的圖像過坐標原點
,且在點
處的切線斜率為
.
(1)求實數的值;
(2) 求函數在區間
上的最小值;
(Ⅲ)若函數的圖像上存在兩點
,使得對于任意給定的正實數
都滿足
是以
為直角頂點的直角三角形,且三角形斜邊中點在
軸上,求點
的橫坐標的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com