【題目】已知,分別是橢圓
的左、右焦點.
(1)若點是第一象限內橢圓上的一點,
,求點
的坐標;
(2)設過定點的直線
與橢圓交于不同的兩點
,且
為銳角(其中
為坐標原點),求直線
的斜率
的取值范圍.
科目:高中數學 來源: 題型:
【題目】如圖,過拋物線y2=2px(p>0)焦點F的直線l交拋物線于點A、B,交其準線于點C,若|BC|=2|BF|,且|AF|=3,則此拋物線的方程為( )
A.y2=3x
B.y2=9x
C.y2= x
D.y2= x
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓O:x2+y2=4與x軸負半軸的交點為A,點P在直線l: x+y﹣a=0上,過點P作圓O的切線,切點為T.
(1)若a=8,切點T( ,﹣1),求直線AP的方程;
(2)若PA=2PT,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面是正方形,側面PAD⊥底面ABCD,且PA=PD= AD,若E、F分別為PC、BD的中點.
(Ⅰ) 求證:EF∥平面PAD;
(Ⅱ) 求證:EF⊥平面PDC.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,內角A,B,C所對的邊分別為a,b,c,已知A= ,b2﹣a2=
c2 .
(1)求tanC的值;
(2)若△ABC的面積為3,求b的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax2﹣x+2a﹣1(a>0).
(1)若f(x)在區間[1,2]為單調增函數,求a的取值范圍;
(2)設函數f(x)在區間[1,2]上的最小值為g(a),求g(a)的表達式;
(3)設函數 ,若對任意x1 , x2∈[1,2],不等式f(x1)≥h(x2)恒成立,求實數a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com