【題目】若關(guān)于x的不等式2lnx≤ax2+(2a﹣2)x+1恒成立,則a的最小整數(shù)值是( )
A.0B.1C.2D.3
【答案】B
【解析】
根據(jù)條件先參變分離得:,令g(x)
,問(wèn)題轉(zhuǎn)化為
,再對(duì)
求導(dǎo)判斷其單調(diào)性,求解
,從而得到a的最小整數(shù)值.
若關(guān)于x的不等式2lnx≤ax2+(2a﹣2)x+1恒成立,
問(wèn)題等價(jià)于a在(0,+∞)恒成立,
令g(x),則g′(x)
,
令h(x)x﹣lnx,(x>0),
則h′(x)0,
故h(x)在(0,+∞)遞減,
又,
,
所以存在,使得
,即
,
所以x∈(1,x0)時(shí),g′(x)>0,g(x)遞增,
x∈(x0,2)時(shí),g′(x)<0,g(x)遞減,
∴g(x)max=g(x0),
又,
所以g(x)max=g(x0),
又1<x0<2,
∴,
∴a≥1,a的最小整數(shù)值是1.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020年是我國(guó)垃圾分類逐步凸顯效果關(guān)鍵的一年.在國(guó)家高度重視,重拳出擊的前提下,高強(qiáng)度、高頻率的宣傳教育能有效縮短我國(guó)生活垃圾分類走入世界前列所需的時(shí)間,打好垃圾分類這場(chǎng)“持久戰(zhàn)”,“全民戰(zhàn)”.某市做了一項(xiàng)調(diào)查,在一所城市中學(xué)和一所縣城中學(xué)隨機(jī)各抽取15名學(xué)生,對(duì)垃圾分類知識(shí)進(jìn)行問(wèn)答,滿分為100分,他們所得成績(jī)?nèi)缦拢?/span>
城市中學(xué)學(xué)生成績(jī)分別為:73 71 83 86 92 70 88 93 73 97 87 88 74 86 85
縣城中學(xué)學(xué)生成績(jī)分別為:60 64 71 91 60 76 72 85 81 72 62 74 73 63 72
(1)根據(jù)上述兩組數(shù)據(jù)在圖中完成兩所中學(xué)學(xué)生成績(jī)的莖葉圖,并通過(guò)莖葉圖比較兩所中學(xué)學(xué)生成績(jī)的平均分及分散程度;(不要求計(jì)算出具體值,給出結(jié)論即可)
(2)從城市中學(xué)成績(jī)?cè)?/span>80分以上的學(xué)生中抽取4名,記這4名學(xué)生的成績(jī)?cè)?/span>90分以上的人數(shù)為X,求X的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】執(zhí)行如圖所示的程序框圖,正確的是( )
A.若輸入a,b,c的值依次為1,2,4,則輸出的值為5
B.若輸入a,b,c的值依次為2,3,5,則輸出的值為7
C.若輸入a,b,c的值依次為3,4,5,則輸出的值為15
D.若輸入a,b,c的值依次為2,3,4,則輸出的值為10
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某人經(jīng)營(yíng)淡水池塘養(yǎng)草魚(yú),根據(jù)過(guò)去期的養(yǎng)殖檔案,該池塘的養(yǎng)殖重量
(百斤)都在
百斤以上,其中不足
百斤的有
期,不低于
百斤且不超過(guò)
百斤的有
期,超過(guò)
百斤的有
期.根據(jù)統(tǒng)計(jì),該池塘的草魚(yú)重量的增加量
(百斤)與使用某種餌料的質(zhì)量
(百斤)之間的關(guān)系如圖所示.
(1)根據(jù)數(shù)據(jù)可知與
具有線性相關(guān)關(guān)系,請(qǐng)建立
關(guān)于
的回歸方程
;如果此人設(shè)想使用某種餌料
百斤時(shí),草魚(yú)重量的增加量須多于
百斤,請(qǐng)根據(jù)回歸方程計(jì)算,確定此方案是否可行?并說(shuō)明理由.
(2)養(yǎng)魚(yú)的池塘對(duì)水質(zhì)含氧量與新鮮度要求較高,某商家為該養(yǎng)殖戶提供收費(fèi)服務(wù),即提供不超過(guò)臺(tái)增氧沖水機(jī),每期養(yǎng)殖使用的沖水機(jī)運(yùn)行臺(tái)數(shù)與魚(yú)塘的魚(yú)重量
有如下關(guān)系:
魚(yú)的重量(單位:百斤) | |||
沖水機(jī)只需運(yùn)行臺(tái)數(shù) |
若某臺(tái)增氧沖水機(jī)運(yùn)行,則商家每期可獲利千元;若某臺(tái)沖水機(jī)未運(yùn)行,則商家每期虧損
千元.視頻率為概率,商家欲使每期沖水機(jī)總利潤(rùn)的均值達(dá)到最大,應(yīng)提供幾臺(tái)增氧沖水機(jī)?
附:對(duì)于一組數(shù)據(jù),其回歸方程
的斜率和截距的最小二乘估計(jì)公式分別為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中
,
,
為自然對(duì)數(shù)的底數(shù).
若
,
,①若函數(shù)
單調(diào)遞增,求實(shí)數(shù)
的取值范圍;②若對(duì)任意
,
恒成立,求實(shí)數(shù)
的取值范圍.
若
,且
存在兩個(gè)極值點(diǎn)
,
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣sinx,記f(x)的導(dǎo)函數(shù)為f'(x).
(1)若h(x)=axf'(x)是(0,+∞)上的單調(diào)遞增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)若x∈(0,2π),試判斷函數(shù)f(x)的極值點(diǎn)個(gè)數(shù),并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是平面的斜線段,A為斜足,點(diǎn)C滿足
,且在平面
內(nèi)運(yùn)動(dòng),則有以下幾個(gè)命題:
①當(dāng)時(shí),點(diǎn)C的軌跡是拋物線;
②當(dāng)時(shí),點(diǎn)C的軌跡是一條直線;
③當(dāng)時(shí),點(diǎn)C的軌跡是圓;
④當(dāng)時(shí),點(diǎn)C的軌跡是橢圓;
⑤當(dāng)時(shí),點(diǎn)C的軌跡是雙曲線.
其中正確的命題是__________.(將所有正確的命題序號(hào)填到橫線上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),(
).
(Ⅰ)若函數(shù)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)
的取值范圍;
(Ⅱ)設(shè),若
,若函數(shù)對(duì)
恒成立,求實(shí)數(shù)
的取值范圍.(
是自然對(duì)數(shù)的底數(shù),
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大型商場(chǎng)的空調(diào)在1月到5月的銷(xiāo)售量與月份相關(guān),得到的統(tǒng)計(jì)數(shù)據(jù)如下表:
月份 | 1 | 2 | 3 | 4 | 5 |
銷(xiāo)量 | 0.6 | 0.8 | 1.2 | 1.6 | 1.8 |
(1)經(jīng)分析發(fā)現(xiàn)1月到5月的銷(xiāo)售量可用線性回歸模型擬合該商場(chǎng)空調(diào)的月銷(xiāo)量(百件)與月份
之間的相關(guān)關(guān)系.請(qǐng)用最小二乘法求
關(guān)于
的線性回歸方程
,并預(yù)測(cè)6月份該商場(chǎng)空調(diào)的銷(xiāo)售量;
(2)若該商場(chǎng)的營(yíng)銷(xiāo)部對(duì)空調(diào)進(jìn)行新一輪促銷(xiāo),對(duì)7月到12月有購(gòu)買(mǎi)空調(diào)意愿的顧客進(jìn)行問(wèn)卷調(diào)查.假設(shè)該地?cái)M購(gòu)買(mǎi)空調(diào)的消費(fèi)群體十分龐大,經(jīng)過(guò)營(yíng)銷(xiāo)部調(diào)研機(jī)構(gòu)對(duì)其中的500名顧客進(jìn)行了一個(gè)抽樣調(diào)查,得到如下一份頻數(shù)表:
有購(gòu)買(mǎi)意愿對(duì)應(yīng)的月份 | 7 | 8 | 9 | 10 | 11 | 12 |
頻數(shù) | 60 | 80 | 120 | 130 | 80 | 30 |
現(xiàn)采用分層抽樣的方法從購(gòu)買(mǎi)意愿的月份在7月與12月的這90名顧客中隨機(jī)抽取6名,再?gòu)倪@6人中隨機(jī)抽取3人進(jìn)行跟蹤調(diào)查,求抽出的3人中恰好有2人是購(gòu)買(mǎi)意愿的月份是12月的概率.
參考公式與數(shù)據(jù):線性回歸方程,其中
,
.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com