【題目】已知橢圓的兩個焦點分別為
,
,且經過點
.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)的頂點都在橢圓
上,其中
關于原點對稱,試問
能否為正三角形?并說明理由.
科目:高中數學 來源: 題型:
【題目】已知橢圓C: +y2=1與直線l:y=kx+m相交于E、F兩不同點,且直線l與圓O:x2+y2=
相切于點W(O為坐標原點).
(1)證明:OE⊥OF;
(2)設λ= ,求實數λ的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
的右準線方程為
,又離心率為
,橢圓的左頂點為
,上頂點為
,點
為橢圓上異于
任意一點.
(1)求橢圓的方程;
(2)若直線與
軸交于點
,直線
與
軸交于點
,求證:
為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在△ABC和△ACD中,∠ACB=∠ADC=90°,∠BAC=∠CAD,⊙O是以AB為直徑的圓,DC的延長線與AB的延長線交于點E.
(Ⅰ)求證:DC是⊙O的切線;
(Ⅱ)若EB=6,EC=6 ,求BC的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐中,
兩兩垂直且相等,過
的中點
作平面
∥
,且
分別交PB,PC于M、N,交
的延長線于
.
(Ⅰ)求證: 平面
;
(Ⅱ)若,求二面角
的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓C: =1的離心率e=
,動點P在橢圓C上,點P到橢圓C的兩個焦點的距離之和是4.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若橢圓C1的方程為 =1(m>n>0),橢圓C2的方程為
=λ(λ>0,且λ≠1),則稱橢圓C2是橢圓C1的λ倍相似橢圓.已知橢圓C2是橢圓C的3倍相似橢圓.若過橢圓C上動點P的切線l交橢圓C2于A,B兩點,O為坐標原點,試證明當切線l變化時|PA|=|PB|并研究△OAB面積的變化情況.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓的圓心在直線
上,且圓
經過點
與點
.
(1)求圓的方程;
(2)過點作圓
的切線,求切線所在的直線的方程.
【答案】(1);(2)
或
.
【解析】試題分析:(1)求出線段的中點
,進而得到線段
的垂直平分線為
,與
聯立得交點
,∴
.則圓
的方程可求
(2)當切線斜率不存在時,可知切線方程為.
當切線斜率存在時,設切線方程為,由
到此直線的距離為
,解得
,即可到切線所在直線的方程.
試題解析:((1)設 線段的中點為
,∵
,
∴線段的垂直平分線為
,與
聯立得交點
,
∴.
∴圓的方程為
.
(2)當切線斜率不存在時,切線方程為.
當切線斜率存在時,設切線方程為,即
,
則到此直線的距離為
,解得
,∴切線方程為
.
故滿足條件的切線方程為或
.
【點睛】本題考查圓的方程的求法,圓的切線,中點弦等問題,解題的關鍵是利用圓的特性,利用點到直線的距離公式求解.
【題型】解答題
【結束】
20
【題目】某小型企業甲產品生產的投入成本(單位:萬元)與產品銷售收入
(單位:萬元)存在較好的線性關系,下表記錄了最近5次產品的相關數據.
| 7 | 10 | 11 | 15 | 17 |
| 19 | 22 | 25 | 30 | 34 |
(1)求關于
的線性回歸方程;
(2)根據(1)中的回歸方程,判斷該企業甲產品投入成本20萬元的毛利率更大還是投入成本24萬元的毛利率更大()?
相關公式:
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學對男女學生是否喜愛古典音樂進行了一個調查,調查者對學校高三年級隨機抽取了100名學生,調查結果如表:
喜愛 | 不喜愛 | 總計 | |
男學生 | 60 | 80 | |
女學生 | |||
總計 | 70 | 30 |
附:K2=
P(K2≥k0) | 0.100 | 0.050 | 0.010 |
k0 | 2.706 | 3.841 | 6.635 |
(1)完成如表,并根據表中數據,判斷是否有95%的把握認為“男學生和女學生喜歡古典音樂的程度有差異”;
(2)從以上被調查的學生中以性別為依據采用分層抽樣的方式抽取10名學生,再從這10名學生中隨機抽取5名學生去某古典音樂會的現場觀看演出,求正好有X個男生去觀看演出的分布列及期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com