【題目】已知橢圓:
在左、右焦點分別為
,
,上頂點為點
,若
是面積為
的等邊三角形.
(1)求橢圓的標準方程;
(2)已知,
是橢圓
上的兩點,且
,求使
的面積最大時直線
的方程(
為坐標原點).
【答案】解(1);(2)
或
.
【解析】
(1)由是面積為
的等邊三角形,結合性質
,列出關于
、
的方程組,求出
、
,即可得結果;(2)先證明直線
的斜率存在,設直線
的方程為
,與橢圓方程聯立消去
,利用弦長公式可得
,化簡得
.原點
到直線
的距離為
,
的面積
,當
最大時,
的面積最大.由
,利用二次函數的性質可得結果.
(1)由是面積為
的等邊三角形,得
,
所以,
,從而
,
所以橢圓的標準方程為
.
(2)由(1)知,當軸時,
,則
為橢圓
的短軸,故有
,
,
三點共線,不合題意.
所以直線的斜率存在,設直線
的方程為
,點
,點
,聯立方程組
消去
,得
,
所以有,
,
則
,
即,化簡得
.
因為,所以有
且
.
原點到直線
的距離為
,
的面積
,
所以當最大時,
的面積最大.
因為,而
,
所以當時,
取最大值為3,
面積的最大值
.
把代入
,得
,所以有
,
即直線的方程為
或
.
科目:高中數學 來源: 題型:
【題目】上海市旅游節剛落下帷幕,在旅游節期間,甲、乙、丙三位市民顧客分別獲得一些景區門票的折扣消費券,數量如表1,已知這些景區原價和折扣價如表2(單位:元).
表1:
數量 | 景區1 | 景區2 | 景區3 |
甲 | 0 | 2 | 2 |
乙 | 3 | 0 | 1 |
丙 | 4 | 1 | 0 |
表2:
門票 | 景區1 | 景區2 | 景區3 |
原價 | 60 | 90 | 120 |
折扣后價 | 40 | 60 | 80 |
(1)按照上述表格的行列次序分別寫出這三位市民獲得的折扣消費券數量矩陣A和三個景區的門票折扣后價格矩陣B;
(2)利用你所學的矩陣知識,計算三位市民各獲得多少元折扣?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2017高考新課標Ⅲ,理19)如圖,四面體ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.
(1)證明:平面ACD⊥平面ABC;
(2)過AC的平面交BD于點E,若平面AEC把四面體ABCD分成體積相等的兩部分,求二面角D–AE–C的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知是橢圓
與拋物線
的一個公共點,且橢圓與拋物線具有一個相同的焦點
.
(1)求橢圓及拋物線
的方程;
(2)設過且互相垂直的兩動直線
,
與橢圓
交于
兩點,
與拋物線
交于
兩點,求四邊形
面積的最小值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國古代數學家祖暅提出原理:“冪勢既同,則積不容異”.其中“冪”是截面積,“勢”是幾何體的高.該原理的意思是:夾在兩個平行平面間的兩個幾何體,被任一平行于這兩個平行平面的平面所截,若所截的兩個截面的面積恒相等,則這兩個幾何體的體積相等.如圖,在空間直角坐標系中的平面內,若函數
的圖象與
軸圍成一個封閉的區域
,將區域
沿
軸的正方向平移8個單位長度,得到幾何體如圖一,現有一個與之等高的圓柱如圖二,其底面積與區域
的面積相等,則此圓柱的體積為__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著互聯網技術的快速發展,人們更加關注如何高效地獲取有價值的信息,網絡知識付費近兩年呈現出爆發式的增長,為了了解網民對網絡知識付費的態度,某網站隨機抽查了歲及以上不足
歲的網民共
人,調查結果如下:
(1)請完成上面的列聯表,并判斷在犯錯誤的概率不超過
的前提下,能否認為網民對網絡知識付費的態度與年齡有關?
(2)在上述樣本中用分層抽樣的方法,從支持和反對網絡知識付費的兩組網民中抽取名,若在上述
名網民中隨機選
人,求至少1人支持網絡知識付費的概率.
附:,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓:
的左、右焦點分別為
,
,下頂點為
,橢圓
的離心率是
,
的面積是
.
(1)求橢圓的標準方程.
(2)直線與橢圓
交于
,
兩點(異于
點),若直線
與直線
的斜率之和為1,證明:直線
恒過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】古希臘著名數學家阿波羅尼斯與歐幾里得、阿基米德齊名.他發現:“平面內到兩個定點,
的距離之比為定值
的點的軌跡是圓”.后來,人們將這個圓以他的名字命名,稱為阿波羅尼斯圓,簡稱阿氏圓.在平面直角坐標系
中,
,
,點
滿足
.設點
的軌跡為
,下列結論正確的是( )
A.的方程為
B.在上存在點
,使得
C.當,
,
三點不共線時,射線
是
的平分線
D.在三棱錐中,
面
,且
,
,
,該三棱錐體積最大值為12
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com