日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知向量a=(sinx,cos),b=(cosx,sinx-2cosx),0<x<
π2

(Ⅰ)若a∥b,求x;
(Ⅱ)設f(x)=a•b,函數f(x)經過怎樣的平移才能使所得的圖象對應的函數成為奇函數?
分析:(1)根據兩個向量平行,應用向量平行的充要條件得到關于變量x的等式,整理等式,根據變量的范圍得到要求的角,本題的關鍵是角的范圍的分析.
(2)寫出根據所給的用向量表示的解析式,用三角函數恒等變形,得到最簡形式,根據題目的平移變化,得到能使他為奇函數的且變化最小的一種結果.
解答:解:(I)若
a
b
,
則sinx(sinx-2cosx)=cosx2
即-sin2x=cos2x
∴tan2x=-1
∵0<x<
π
2
,
∴0<2x<π,
∴2x=
4
,
x=
8

(II)f(x)=
a
b
=2sinxcosx-2cos2x
=sin2x-cos2x-1
=
2
sin(2x-
π
4
)-1
將函數f(x)的圖象向上平移1個單位,再向左平移
π
8
個單位,
即得函數g(x)=
2
sin2x的圖象,而g(x)為奇函數.
點評:本題綜合考查三角函數的變換和性質,這是一個綜合題目,也是高考必考的一種類型的題目,屬于容易題,是一個送分的題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知向量
a
=(sinθ,-2),
b
=(cosθ,1)
(1)若
a
b
,求tanθ;
(2)當θ∈[-
π
12
π
3
]時,求f(θ)=
a
b
-2|
a
+
b
|2的最值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(sinθ,1),
b
=(1,-cosθ),θ∈(0,π)
(Ⅰ)若
a
b
,求θ;
(Ⅱ)若
a
b
=
1
5
,求tan(2θ+
π
4
)
的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(sinθ,cosθ),
b
=(2,1),滿足
a
b
,其中θ∈(0,
π
2
)

(I)求tanθ值;
(Ⅱ)求
2
sin(θ+
π
4
)(sinθ+2cosθ)
cos2θ
的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(sinθ,cosθ)與
b
=(
3
,1),其中θ∈(0,
π
2

(1)若
a
b
,求sinθ和cosθ的值;
(2)若f(θ)=(
a
b
)
2
,求f(θ)的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(sinθ,
3
cosθ),
b
=(1,1).
(1)若
a
b
,求tanθ的值;
(2)若|
a
|=|
b
|,且0<θ<π,求角θ的大。

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 在线观看国精产品二区1819 | 狠狠操天天干 | 久在线视频 | 久草视频首页 | 久久国产麻豆 | 色福利影院 | 美女久久久久 | 国产一区二区观看 | 免费超碰 | 一区二区三区欧美在线 | 欧美一级精品 | 中文字幕在线观看 | 亚洲精品久久久一区二区三区 | 亚洲成av人片在线观看无码 | 中文字幕第80页 | 久草免费在线视频 | 亚洲v日韩v综合v精品v | 久久99国产精一区二区三区 | 一区免费| 精品国产乱码久久久久久影片 | 黄色国产一级视频 | 国产日韩欧美在线观看 | 欧美成人福利 | 久久亚洲二区 | 性培育学校羞耻椅子调教h 另类中文字幕 | 国产成人精品在线视频 | 国产综合视频在线观看 | 亚洲一区二区三区在线视频 | 婷婷色播婷婷 | 欧洲中文字幕 | 国产精品久久久久久久蜜臀 | 久久久99国产精品免费 | 综合久草| 国产一区二区自拍 | 国产精品视频一区二区三区 | 羞羞视频免费观看 | 久久精选视频 | 免费av片网站 | 亚洲一区二区在线 | 国产成人影院 | 日韩在线亚洲 |