日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知數列{an}滿足a1=1,an+1=2an+1(n∈N*
(1)求數列{an}的通項公式;
(2)若數列{bn}滿足,證明:{bn}是等差數列;
(3)證明:
【答案】分析:(1)由題設知an+1+1=2(an+1),所以數列{an+1}是首項為2,公比為2的等比數列,所以an=2n-1.
(2)由題設知,由此能推導出nbn-2=(n-1)bn+1,從而得到2bn+1=bn+bn-1,所以數列{bn}是等差數列.
(3)設,則=,由此能夠證明出
解答:解:(1)∵an+1=2an+1,∴an+1+1=2(an+1)(2分)
故數列{an+1}是首項為2,公比為2的等比數列.(3分)
∴an+1=2n,an=2n-1(4分)

(2)∵
(5分)
2(b1+b2++bn)-2n=nbn①2(b1+b2++bn+bn+1)-2(n+1)=(n+1)bn+1
②-①得2bn+1-2=(n+1)bn+1-nbn
即nbn-2=(n-1)bn+1③(8分)
∴(n+1)bn+1-2=nbn+2
④-③得2nbn+1=nbn+nbn-1,即2bn+1=bn+bn-1(9分)
所以數列{bn}是等差數列.

(3)∵(11分)


=(13分)
(14分)
點評:本題考查數列和不等式的綜合應用題,具有一定的難度,解題時要認真審題,注意挖掘題設中的隱含條件.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知數列{an}滿足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若數列{bn}滿足:bn=
1
an-
1
2
(n∈N*)
,試證明數列bn-1是等比數列;
(2)求數列{anbn}的前n項和Sn
(3)數列{an-bn}是否存在最大項,如果存在求出,若不存在說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}滿足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
則{an}的通項公式
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}滿足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求數列{an}的通項公式;
(2)證明:對于一切正整數n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}滿足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k項的和S3k(用k,a表示)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•北京模擬)已知數列{an}滿足an+1=an+2,且a1=1,那么它的通項公式an等于
2n-1
2n-1

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 亚洲人成在线观看 | 国产亚洲成av人片在线观看 | 欧美 | 一区高清 | 久久成人一区 | 久久夜夜操| 91精品国产一区二区三区蜜臀 | 精品视频在线观看 | 日韩啊v| 精品一区二区久久久久久久网站 | 日韩精品久久久久久 | 久久成人国产精品入口 | 日韩一区二区三区在线 | 久久亚洲美女 | 一本之道高清码 | 青青青草视频 | 色玖玖 | 亚洲精品视频在线 | 国产精品亲子伦av一区二区三区 | 久久久久久久精 | 精品久久久久一区二区国产 | 在线中文字幕播放 | 91国产精品| 欧美wwwsss9999 | 一区二区欧美日韩 | 免费看男女www网站入口在线 | 精品一区二区三区国产 | 久久99精品久久久久久久青青日本 | 91久久国产精品 | 国产欧美日本 | 国产精品成人品 | 欧美一区二区三区啪啪 | 最新日韩av| 国产日韩欧美在线观看 | 色噜噜在线 | 成人妇女免费播放久久久 | 日本欧美大片 | 日本久草 | 欧美国产日韩在线观看 | 亚洲综合精品 | 午夜免费看片 |