日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知f(x)=a1x+a2x2+a3x3+…+anxn,且a1,a2,a3,…,an組成等差數列(n為正偶數),又f(1)=n2,f(-1)=n;
(1)求數列{an}的通項an
(2)求f(
1
2
)的值;
(3)比較f(
1
2
)的值與3的大小,并說明理由.
(1)設數列的公差為d,
因為f(1)=a1+a2+a3+…+an=n2,則na1+
n(n-1)
2
d=n2,即2a1+(n-1)d=2n.
又f(-1)=-a1+a2-a3+…-an-1+an=n,即
n
2
×d=n,d=2.
解得a1=1.
∴an=1+2(n-1)=2n-1.
(2)f(
1
2
)=(
1
2
)+3(
1
2
2+5(
1
2
3+…+(2n-1)(
1
2
n,①
兩邊都乘以
1
2
,可得
1
2
f(
1
2
)=(
1
2
2+3(
1
2
3+5(
1
2
4+…+(2n-1)(
1
2
n+1,②
①-②,得
1
2
f(
1
2
)=
1
2
+2(
1
2
2+2(
1
2
3+…+2(
1
2
n-(2n-1)(
1
2
n+1
1
2
f(
1
2
)=
1
2
+
1
2
+(
1
2
2+…+(
1
2
n-1-(2n-1)(
1
2
n+1
∴f(
1
2
)=1+1+
1
2
+
1
22
+…+
1
2n-2
-(2n-1)
1
2n
=1+
1-
1
2n-1
1-
1
2
-(2n-1)
1
2n
=1+2-
1
2n-2
-(2n-1)
1
2n
=3-(2n+3)(
1
2
n
則f(
1
2
)=3-(2n+3)(
1
2
n
(3)由(2)的結論,f(
1
2
)=3-(2n+3)(
1
2
n
又由(2n+3)(
1
2
n>0,
易得3-(2n+3)(
1
2
n<3,
則f(
1
2
)<3.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知f(x)=a1x+a2x2+a3x3+…+anxn,n為正偶數,且a1,a2,a3,…,an組成等差數列,又f(1)=n2,f(-1)=n.試比較f(
12
)與3的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)=a1x+a2x2+…+anxn(n∈Z*),且y=f(x)的圖象經過點(1,n2).
(1)求數列{an}的通項公式;
(2)當n為奇數時,設g(x)=
1
2
[f(x)-f(-x)]
,是否存在整數m和M,使不等式m<g(
1
2
)<M
恒成立,若存在,求出M-m的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)=a1x+a2x2+a3x3+…+anxn,且a1,a2,a3,…,an組成等差數列(n為正偶數),又f(1)=n2,f(-1)=n;
(1)求數列{an}的通項an
(2)求f(
1
2
)的值;
(3)比較f(
1
2
)的值與3的大小,并說明理由.

查看答案和解析>>

科目:高中數學 來源:2011年高三數學復習(第2章 函數):2.15 函數的綜合運用(解析版) 題型:解答題

已知f(x)=a1x+a2x2+a3x3+…+anxn,n為正偶數,且a1,a2,a3,…,an組成等差數列,又f(1)=n2,f(-1)=n.試比較f()與3的大小.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产精品一区二区无线 | 日韩高清一区二区 | 羞羞视频网站 | 国产美女在线精品免费 | 国产日韩一区二区 | 欧美日韩一二区 | 国产二区视频 | 999视频在线免费观看 | 国产黄色免费网站 | 福利亚洲| 色av综合网 | 欧美日韩一区二区三区在线观看 | 久久人人网 | 激情开心成人网 | 91在线成人 | 国产精品视频久久 | 狠狠爱www人成狠狠爱综合网 | 碰在线视频 | 国产成人免费视频 | 国产视频观看 | 91欧美激情一区二区三区成人 | 日韩精品中文字幕在线播放 | 国产精品视频久久久久久 | 国产精品久久久久久久久免费 | 亚洲一区二区三区视频免费观看 | 亚洲第一区在线 | av观看在线 | 久热精品视频在线播放 | 国产精品视频一区二区三区 | 日韩不卡一区 | 国产九九精品视频 | 九九九久久久 | 日韩avxxxx| 亚洲精品久久久久久久久久久久久 | 日韩成人免费在线 | 国产精品自产av一区二区三区 | 欧美影院一区 | 精品黑人一区二区三区久久 | 国产日韩欧美视频 | 高清国产一区二区三区四区五区 | 高清二区|