【題目】已知橢圓的右焦點為
,坐標原點為
.橢圓
的動弦
過右焦點
且不垂直于坐標軸,
的中點為
,過
且垂直于線段
的直線交射線
于點
(I)證明:點在直線
上;
(Ⅱ)當四邊形是平行四邊形時,求
的面積.
科目:高中數學 來源: 題型:
【題目】必修四第一章我們借助圓的對稱性學習了誘導公式,如在直觀上講單位圓中,當兩個角的終邊關于
軸對稱時,這兩個角的正弦值相等;再如
在單位圓中,當兩個角的終邊關于原點中心對稱時,這兩個角的正弦值互為相反數.觀察這些誘導公式,可以發現它們都是特殊角與任意角
的三角函數的恒等關系.我們如果將特殊角換為任意角
,那么任意角
與
的和(或差)的三角函數與
,
的三角函數會有什么關系呢?如果已知
,
的正弦余弦,能由此推出
的正弦余弦嗎?下面是某高一學生在老師的指導下自行探究
與角
的正弦余弦之間的關系的部分過程,請你順著這位同學的思路以及老師的提示將探究過程完善,并完成后面的題目.探究過程如下:
不妨令如圖,設單位圓與
軸的正半軸相交于點
以
軸的非負半軸為始邊作角
它們的終邊分別與單位圓相交于點
連接
若把扇形
繞著點
旋轉
角,則點
分別與點
重合. ……(未完待續)
(提示一:任意一個圓繞著其圓心旋轉任意角后都與原來的圓重合,這一性質叫做圓的旋轉對稱性)(提示二:平面上任意兩點間的距離公式
)
(1)完善上述探究過程;
(2)利用(1)中的結論解決問題:已知是第三象限角,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某盒子內裝有三種顏色的玻璃球,一位同學每次從中隨機拿出一個玻璃球,觀察顏色后再放回,重復了50次,得到的信息如下:觀察到紅色26次、藍色13次.如果從這個盒子內任意取一個玻璃球,估計:
(1)這個球既不是紅色也不是藍色的概率;
(2)這個球是紅色或者是藍色的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)拋物線的開口向 、對稱軸為直線 、頂點坐標 ;
(2)當 時,函數有最 值,是 ;
(3)當 時,
隨
的增大而增大;當
時,
隨
的增大而減小;
(4)該函數圖象可由的圖象經過怎樣的平移得到的?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】,
兩組各有7位病人,他們服用某種藥物后的康復時間(單位:天)記錄如下:
組:10,11,12,13,14,15,16
組:12,13,15,16,17,14,
假設所有病人的康復時間互相獨立,從,
兩組隨機各選1人,
組選出的人記為甲,
組選出的
人記為乙.
(Ⅰ)求甲的康復時間不少于14天的概率;
(Ⅱ)如果,求甲的康復時間比乙的康復時間長的概率;
(Ⅲ)當為何值時,
,
兩組病人康復時間的方差相等?(結論不要求證明)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在“五四青年節”到來之際,啟東中學將開展一系列的讀書教育活動.為了解高二學生讀書教育情況,決定采用分層抽樣的方法從高二年級四個社團中隨機抽取12名學生參加問卷調査.已知各社團人數統計如下:
(1)若從參加問卷調查的12名學生中隨機抽取2名,求這2名學生來自同一個社團的概率;
(2)在參加問卷調查的12名學生中,從來自三個社團的學生中隨機抽取3名,用
表示從
社團抽得學生的人數,求
的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面
是邊長為
的菱形,
平面
,
,
,
為
與
的交點,
為棱
上一點.
(1)證明:平面平面
;
(2)若平面
,三棱錐
的體積為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為調查乘客的候車情況,公交公司在某站臺的60名候車乘客中隨機抽取15人,將他們的候車時間(單位:分鐘)作為樣本分成5組,如表所示:
組別 | 候車時間 | 人數 |
一 | 2 | |
二 | 6 | |
三 | 4 | |
四 | 2 | |
五 | 1 |
(1)估計這60名乘客中候車時間少于10分鐘的人數;
(2)若從上表第三、四組的6人中隨機抽取2人作進一步的問卷調查,求抽到的兩人恰好來自同一組的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com