日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
(2005•青島)操作:在△ABC中,AC=BC=2,∠C=90°,將一塊等腰直角三角板的直角頂點放在斜邊AB的中點P處,將三角板繞點P旋轉,三角板的兩直角邊分別交射線AC、CB于D、E兩點.圖1,2,3是旋轉三角板得到的圖形中的3種情況.
研究:
(1)三角板繞點P旋轉,觀察線段PD和PE之間有什么數量關系,并結合圖2加以證明;
(2)三角板繞點P旋轉,△PBE是否能成為等腰三角形?若能,指出所有情況(即寫出△PBE為等腰三角形時CE的長);若不能,請說明理由;
(3)若將三角板的直角頂點放在斜邊AB上的M處,且AM:MB=1:3,和前面一樣操作,試問線段MD和ME之間有什么數量關系?并結合圖4加以證明.

【答案】分析:(1)因為△ABC是等腰直角三角形,所以連接PC,容易得到△ACP、△CPB都是等腰直角三角形.連接CP,就可以證明△CDP≌△BEP,再根據全等三角形的對應邊相等,就可以證明DP=PE;
(2)△PBE能成為等腰三角形,位置有四種;
(3)作MH⊥CB,MF⊥AC,構造相似三角形△MDF和△MHE,然后利用對應邊成比例,就可以求出MD和ME之間的數量關系.
解答:解:(1)連接PC.
∵△ABC是等腰直角三角形,P是AB的中點,
∴CP=PB,CP⊥AB,∠ACP=∠ACB=45°.
∴∠ACP=∠B=45°.
又∵∠DPC+∠CPE=∠BPE+∠CPE=90°,
∴∠DPC=∠BPE.
∴△PCD≌△PBE.
∴PD=PE;

(2)共有四種情況:
①當點C與點E重合,即CE=0時,PE=PB;
②CE=2-,此時PB=BE;
③當CE=1時,此時PE=BE;
④當E在CB的延長線上,且CE=2+時,此時PB=EB;

(3)MD:ME=1:3.
過點M作MF⊥AC,MH⊥BC,垂足分別是F、H.
∴MH∥AC,MF∥BC.
∴四邊形CFMH是平行四邊形.
∵∠C=90°,
∴?CFMH是矩形.
∴∠FMH=90°,MF=CH.
,HB=MH,

∵∠DMF+∠DMH=∠DMH+∠EMH=90°,
∴∠DMF=∠EMH.
∵∠MFD=∠MHE=90°,
∴△MDF∽△MEH.

點評:此題比較復雜,綜合考查全等三角形的判定與性質、相似三角形的判定與性質、矩形的判定與性質、圖形的變換.
綜合性很強,勾股定理的計算要求也比較高.
練習冊系列答案
相關習題

科目:初中數學 來源:2005年全國中考數學試題匯編《圖形的相似》(07)(解析版) 題型:解答題

(2005•青島)操作:在△ABC中,AC=BC=2,∠C=90°,將一塊等腰直角三角板的直角頂點放在斜邊AB的中點P處,將三角板繞點P旋轉,三角板的兩直角邊分別交射線AC、CB于D、E兩點.圖1,2,3是旋轉三角板得到的圖形中的3種情況.
研究:
(1)三角板繞點P旋轉,觀察線段PD和PE之間有什么數量關系,并結合圖2加以證明;
(2)三角板繞點P旋轉,△PBE是否能成為等腰三角形?若能,指出所有情況(即寫出△PBE為等腰三角形時CE的長);若不能,請說明理由;
(3)若將三角板的直角頂點放在斜邊AB上的M處,且AM:MB=1:3,和前面一樣操作,試問線段MD和ME之間有什么數量關系?并結合圖4加以證明.

查看答案和解析>>

科目:初中數學 來源:2005年全國中考數學試題匯編《圖形的旋轉》(03)(解析版) 題型:解答題

(2005•青島)操作:在△ABC中,AC=BC=2,∠C=90°,將一塊等腰直角三角板的直角頂點放在斜邊AB的中點P處,將三角板繞點P旋轉,三角板的兩直角邊分別交射線AC、CB于D、E兩點.圖1,2,3是旋轉三角板得到的圖形中的3種情況.
研究:
(1)三角板繞點P旋轉,觀察線段PD和PE之間有什么數量關系,并結合圖2加以證明;
(2)三角板繞點P旋轉,△PBE是否能成為等腰三角形?若能,指出所有情況(即寫出△PBE為等腰三角形時CE的長);若不能,請說明理由;
(3)若將三角板的直角頂點放在斜邊AB上的M處,且AM:MB=1:3,和前面一樣操作,試問線段MD和ME之間有什么數量關系?并結合圖4加以證明.

查看答案和解析>>

科目:初中數學 來源:2005年全國中考數學試題匯編《四邊形》(10)(解析版) 題型:解答題

(2005•青島)操作:在△ABC中,AC=BC=2,∠C=90°,將一塊等腰直角三角板的直角頂點放在斜邊AB的中點P處,將三角板繞點P旋轉,三角板的兩直角邊分別交射線AC、CB于D、E兩點.圖1,2,3是旋轉三角板得到的圖形中的3種情況.
研究:
(1)三角板繞點P旋轉,觀察線段PD和PE之間有什么數量關系,并結合圖2加以證明;
(2)三角板繞點P旋轉,△PBE是否能成為等腰三角形?若能,指出所有情況(即寫出△PBE為等腰三角形時CE的長);若不能,請說明理由;
(3)若將三角板的直角頂點放在斜邊AB上的M處,且AM:MB=1:3,和前面一樣操作,試問線段MD和ME之間有什么數量關系?并結合圖4加以證明.

查看答案和解析>>

科目:初中數學 來源:2005年山東省青島市中考數學試卷(課標卷)(解析版) 題型:解答題

(2005•青島)操作:在△ABC中,AC=BC=2,∠C=90°,將一塊等腰直角三角板的直角頂點放在斜邊AB的中點P處,將三角板繞點P旋轉,三角板的兩直角邊分別交射線AC、CB于D、E兩點.圖1,2,3是旋轉三角板得到的圖形中的3種情況.
研究:
(1)三角板繞點P旋轉,觀察線段PD和PE之間有什么數量關系,并結合圖2加以證明;
(2)三角板繞點P旋轉,△PBE是否能成為等腰三角形?若能,指出所有情況(即寫出△PBE為等腰三角形時CE的長);若不能,請說明理由;
(3)若將三角板的直角頂點放在斜邊AB上的M處,且AM:MB=1:3,和前面一樣操作,試問線段MD和ME之間有什么數量關系?并結合圖4加以證明.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日韩1区2区3区 | 国产不卡一区 | 日韩免费网站 | 日韩精品一区二区三区在线播放 | 天堂资源av| 在线看av网址 | 国产在线观看免费av | 久久精品亚洲 | 国产精品99久久久久久动医院 | 久久精品久久久久电影 | 久久国产欧美一区二区三区精品 | 国产精品久久久久久久久久东京 | 欧美日韩在线免费观看 | 成人国产精品久久 | 一级一级一级一级毛片 | 97久久精品人人澡人人爽 | 日韩美女中文字幕 | 日韩国产欧美一区 | 五月激情六月天 | 国产一区国产二区在线观看 | 成人免费视频观看视频 | 亚洲最新视频在线观看 | 亚洲国产视频精品 | 欧美精品一区二区三区蜜桃视频 | 亚洲一级黄色 | 亚洲精品一二三区 | 成人欧美一区二区三区黑人孕妇 | 日韩精品一区二区三区在线 | 国产不卡一区 | 天天添夜夜操 | 亚州黄色 | 成人精品视频在线观看 | 久久综合一区二区三区 | 欧美9999| 久久视频在线免费观看 | 亚洲精品在线免费 | 国产综合精品视频 | 国产成人精品一区二区三区视频 | 国产成人综合在线 | 不卡一区二区三区四区 | 久久久久久久久久穴 |