【題目】如圖,點E是ABCD的邊AD的中點,連接CE交BD于點F,如果S△DEF=a,那么S△BCF= .
科目:初中數學 來源: 題型:
【題目】如圖,
點E為矩形ABCD外一點,AE=DE,連接EB、EC分別與AD相交于點F、G.求證:
(1)△EAB≌△EDC;
(2)∠EFG=∠EGF.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD中,AB∥CD,AB≠CD,BD=AC.
(1)求證:AD=BC;
(2)若E、F、G、H分別是AB、CD、AC、BD的中點,求證:線段EF與線段GH互相垂直平分.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+2經過點A(﹣1,0)和點B(4,0),且與y軸交于點C,點D的坐標為(2,0),點P(m,n)是該拋物線上的一個動點,連接CA,CD,PD,PB.
(1)求該拋物線的解析式;
(2)當△PDB的面積等于△CAD的面積時,求點P的坐標;
(3)當m>0,n>0時,過點P作直線PE⊥y軸于點E交直線BC于點F,過點F作FG⊥x軸于點G,連接EG,請直接寫出隨著點P的運動,線段EG的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC是等邊三角形,AO⊥BC,垂足為點O,⊙O與AC相切于點D,BE⊥AB交AC的延長線于點E,與⊙O相交于G、F兩點.
(1)求證:AB與⊙O相切;
(2)若等邊三角形ABC的邊長是4,求線段BF的長?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點P是正方形ABCD內的一點,連接CP,將線段CP繞點C順時針旋轉90°,得到線段CQ,連接BP,DQ.
(1)如圖a,求證:△BCP≌△DCQ;
(2)如圖,延長BP交直線DQ于點E.
①如圖b,求證:BE⊥DQ;
②如圖c,若△BCP為等邊三角形,判斷△DEP的形狀,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學組織學生去福利院慰問,在準備禮品時發現,購買1個甲禮品比購買1個乙禮品多花40元,并且花費600元購買甲禮品和花費360元購買乙禮品的數量相等.
(1)求甲、乙兩種禮品的單價各為多少元?
(2)學校準備購買甲、乙兩種禮品共30個送給福利院的老人,要求購買禮品的總費用不超過2000元,那么最多可購買多少個甲禮品?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,從一個建筑物的A處測得對面樓BC的頂部B的仰角為32°,底部C的俯角為45°,觀測點與樓的水平距離AD為31m,則樓BC的高度約為 m(結果取整數).(參考數據:sin32°≈0.5,cos32°≈0.8,tan32°≈0.6)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com