【題目】迎接學校“元旦”文藝匯演,八年級某班的全體同學捐款購買了表演道具,經過充分的排練準備,最終獲得了一等獎.班長對全體同學的捐款情況繪制成下表:
捐款金額 | 5元 | 10元 | 15元 | 20元 |
捐款人數 | 10人 | 15人 | 5人 |
由于填表時不小心把墨水滴在了統計表上,致使表中數據不完整,但知道捐款金額為10元的人數為全班人數的30%,結合上表回答下列問題:
(1)該班共有名同學;
(2)該班同學捐款金額的眾數是元,中位數是元.
(3)如果把該班同學的捐款情況繪制成扇形統計圖,則捐款金額為20元的人數所對的扇形圓心角為度.
科目:初中數學 來源: 題型:
【題目】如圖,已知∠1,∠2互為補角,且∠3=∠B,
(1)求證:∠AFE=∠ACB;
(2)若CE平分∠ACB,且∠1=80°,∠3=45°,求∠AFE的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】通信市場競爭日益激烈,某通信公司的手機市話費標準按原標準每分鐘降低a元后,再次下調了20%,現在收費標準是每分鐘b元,則原收費標準每分鐘是元.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】現有五種說法:①﹣a表示負數;②絕對值最小的有理數是0;③3×102x2y是5次單項式;④ 是多項式.其中正確的是( )
A.①③
B.②④
C.②③
D.①④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】解答
(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經過點A,BD⊥直線m,CE⊥直線m,垂足分別為點D,E.
證明:DE=BD+CE.
(2)如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D,A,E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意銳角或鈍角.請問結論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.
(3)拓展與應用:如圖(3),D,E是D,A,E三點所在直線m上的兩動點(D,A, E三點互不重合),點F為∠BAC平分線上的一點,且△ABF和△ACF均為等邊三角形,連接BD,CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】完成證明,說明理由. 已知:如圖,點D在BC邊上,DE、AB交于點F,AC∥DE,∠1=∠2,∠3=∠4.
求證:AE∥BC.
證明:∵AC∥DE(已知),
∴∠4=()
∵∠3=∠4(已知),
∴∠3=()
∵∠1=∠2(已知),
∴∠1+∠FAD=∠2+∠FAD()
即∠FAC=∠EAD,
∴∠3= .
∴AE∥BC()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com