【題目】如圖,矩形ABCD中,AB=8,BC=15,點E是AD邊上一點,連接BE,把△ABE沿BE折疊,使點A落在點A′處,點F是CD邊上一點,連接EF,把△DEF沿EF折疊,使點D落在直線EA′上的點D′處,當點D′落在BC邊上時,AE的長為_____.
【答案】 或
.
【解析】
設AE=A′E=x,則DE=ED′=15﹣x,只要證明BD′=ED′=15﹣x,在Rt△BA′D′中,根據BD′2=BA′2+A′D′2,列出方程即可解決問題.
解:∵把△ABE沿BE折疊,使點A落在點A′處,
∴AE=AE′,AB=BE′=8,∠A=∠BE′E=90°,
∵把△DEF沿EF折疊,使點D落在直線EA′上的點D′處,
∴DE=D′E,DF=D′F,∠ED′F=∠D=90°,
設AE=A′E=x,則DE=ED′=15﹣x,
∵AD∥BC,
∴∠1=∠EBC,
∵∠1=∠2,
∴∠2=∠EBD′,
∴BD′=ED′=15﹣x,
∴A′D′=15﹣2x,
在Rt△BA′D′中,
∵BD′2=BA′2+A′D′2,
∴82+(15﹣2x)2=(15﹣x)2,
解得x= ,
∴AE= 或
.
科目:初中數學 來源: 題型:
【題目】如圖,一艘海輪位于燈塔P的北偏東53°方向,距離燈塔100海里的A處,它沿正南方向航行一段時間后,到達位于燈塔P的南偏東45°方向上的B處.
(1)在圖中畫出點B,并求出B處與燈塔P的距離(結果取整數);
(2)用方向和距離描述燈塔P相對于B處的位置.
(參考數據:sin 53°≈0.80,cos 53°≈0.60,tan53°≈1.33, ≈1.41)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有這樣一個問題:探究函數y=的圖象與性質.小彤根據學習函數的經驗,對函數y=
的圖象與性質進行了探究.
下面是小彤探究的過程,請補充完整:
(1)函數y=的自變量x的取值范圍是 ;
(2)下表是y與x的幾組對應值:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | 4 | 5 | 6 | 7 | 8 | … |
y | … | m | 0 | ﹣1 | 3 | 2 | … |
則m的值為 ;
(3)如圖所示,在平面直角坐標系xOy中,描出了以上表中各對對應值為坐標的點,根據描出的點,畫出了圖象的一部分,請根據剩余的點補全此函數的圖象;
(4)觀察圖象,寫出該函數的一條性質 ;
(5)若函數y=的圖象上有三個點A(x1,y1)、B(x2,y2)、C(x3,y3),且x1<3<x2<x3,則y1、y2、y3之間的大小關系為 ;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,如圖,在鉛直高度為200 m的小山上建有一座電視轉播塔,某數學興趣小組為測量電視轉播塔的高度,在山腳的點C處測得山頂B的仰角為30°(即∠BCD=300),測得塔頂A的仰角為45°(即∠ACD=45°),請根據以上數據求塔高AB(精確到1 m)(備用數據:≈1.414,
≈1.732)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC是半徑為2的⊙O的內接三角形,連接OA、OB,點D、E、F、G分別是CA、OA、OB、CB的中點.
(1)試判斷四邊形DEFG的形狀,并說明理由;
(2)填空:
①若AB=3,當CA=CB時,四邊形DEFG的面積是 ;
②若AB=2,當∠CAB的度數為 時,四邊形DEFG是正方形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】美化城市,改善人們的居住環境已成為城市建設的一項重要內容.我市近幾年來,通過拆遷舊房,植草,栽樹,修公園等措施,使城區綠地面積不斷增加(如圖所示).
(1)根據圖中所提供的信息回答下列問題:2015年底的綠地面積為 公頃,比2014年底增加了 公頃;在2013年,2014年,2015年這三年中,綠地面積增加最多的是 年;
(2)為滿足城市發展的需要,計劃到2017年底使城區綠地面積達到72.6公頃,試求今明兩年綠地面積的年平均增長率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】拋物線y=ax2+bx+c的圖象如圖,則下列結論:①abc>0;②a+b+c=2;③b2﹣4ac<0;④b<2a.其中正確的結論是( )
A. ①② B. ②③ C. ②④ D. ③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,為了測量某建筑物CD的高度,先在地面上用測角儀自A處測得建筑物頂部的仰角是30°,然后在水平地面上向建筑物前進了100m,此時自B處測得建筑物頂部的仰角是45°.已知測角儀的高度是1.5m,請你計算出該建筑物的高度.(取=1.732,結果精確到1m)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com