日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情

數學課堂上,徐老師出示一道試題:
如圖(十)所示,在正三角形ABC中,M是BC邊(不含端點B、C)上任意一點,P是BC延長線上一點,N是∠ACP的平分線上一點.若∠AMN=60°,求證:AM=MN.
(1)經過思考,小明展示了一種正確的證明過程.請你將證明過程補充完整.
證明:在AB上截取EA=MC,連結EM,得△AEM.
∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.
又CN平分∠ACP,∠4=∠ACP=60°.∴∠MCN=∠3+∠4=120°…………①
又∵BA=BC,EA=MC,∴BA-EA=BC-MC,即BE=BM.
∴△BEM為等邊三角形.∴∠6=60°.
∴∠5=180°-∠6=120°.………②
∴由①②得∠MCN=∠5.
在△AEM和△MCN中,
                                            
∴△AEM≌△MCN (ASA).∴AM=MN.
(2)若將試題中的“正三角形ABC”改為“正方形A1B1C1D1”(如圖),N1是∠D1C1P1的平分線上一點,則當∠A1M1N1=90°時,結論A1M1=M1N1.是否還成立?(直接寫出答案,不需要證明)
(3) 若將題中的“正三角形ABC”改為“正多邊形AnBnCnDn…Xn”,請你猜想:當∠AnMnNn   °時,結論AnMn=MnNn仍然成立?(直接寫出答案,不需要證明)
    

1)∵∠1=∠2. AE="MC" , ∠MCN=∠5.
2)成立  在上截取
3)∠AMN=60°= (3-2)/3 ×180°
∠A1M1N1=90°=(4-2)/4 ×180°
∠AnMnNn= (n-2)/n ×180°

解析

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

數學課堂上,徐老師出示一道試題:
如圖1所示,在正三角形ABC中,M是BC邊(不含端點B、C)上任意一點,P是BC延長線上一點,N是∠ACP的平分線上一點.若∠AMN=60°,求證:AM=MN.
(1)經過思考,小明展示了一種正確的證明過程.請你將證明過程補充完整.
證明:在AB上截取EA=MC,連接EM,得△AEM.
∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.
又CN平分∠ACP,∠4=
12
∠ACP=60°.∴∠MCN=∠3+∠4=120°…①
又∵BA=BC,EA=MC,∴BA-EA=BC-MC,即BE=BM.
∴△BEM為等邊三角形.∴∠6=60°.
∴∠5=180°-∠6=120°.…②
∴由①②得∠MCN=∠5.
在△AEM和△MCN中,
 

∴△AEM≌△MCN (ASA).∴AM=MN.

(2)若將試題中的“正三角形ABC”改為“正方形A1B1C1D1”(如圖2),N1是∠D1C1P1的平分線上一點,則當∠A1M1N1=90°時,結論A1M1=M1N1.是否還成立?(直接寫出答案,不需要證明)
(3)若將題中的“正三角形ABC”改為“正多邊形AnBnCnDn…Xn”,請你猜想:當∠AnMnNn=
 
°時,結論AnMn=MnNn仍然成立?(直接寫出答案,不需要證明)
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

數學課堂上,徐老師出示一道試題:

    如圖(十)所示,在正三角形ABC中,M是BC邊(不含端點B、C)上任意一點,P是BC延長線上一點,N是∠ACP的平分線上一點.若∠AMN=60°,求證:AM=MN.

(1)經過思考,小明展示了一種正確的證明過程.請你將證明過程補充完整.

    證明:在AB上截取EA=MC,連結EM,得△AEM.

    ∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.

    又CN平分∠ACP,∠4=∠ACP=60°.∴∠MCN=∠3+∠4=120°…………①

又∵BA=BC,EA=MC,∴BA-EA=BC-MC,即BE=BM.

∴△BEM為等邊三角形.∴∠6=60°.

∴∠5=180°-∠6=120°.………②

∴由①②得∠MCN=∠5.

在△AEM和△MCN中,

                                            

∴△AEM≌△MCN (ASA).∴AM=MN.

(2)若將試題中的“正三角形ABC”改為“正方形A1B1C1D1”(如圖),N1是∠D1C1P1的平分線上一點,則當∠A1M1N1=90°時,結論A1M1=M1N1.是否還成立?(直接寫出答案,不需要證明)

(3) 若將題中的“正三角形ABC”改為“正多邊形AnBnCnDn…Xn”,請你猜想:當∠AnMnNn    °時,結論AnMn=MnNn仍然成立?(直接寫出答案,不需要證明)

    

 

 

查看答案和解析>>

科目:初中數學 來源: 題型:

數學課堂上,徐老師出示一道試題:如圖(十)所示,在正三角形ABC中,MBC邊(不含端點BC)上任意一點,PBC延長線上一點,N是∠ACP的平分線上一點.若∠AMN=60°,求證:AMMN

    

(1)經過思考,小明展示了一種正確的證明過程.請你將證明過程補充完整.

證明:在AB上截取EAMC,連結EM,得△AEM

∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.

CN平分∠ACP,∠4=∠ACP=60°.∴∠MCN=∠3+∠4=120°…………①

又∵BABCEAMC,∴BAEABCMC,即BEBM

∴△BEM為等邊三角形.∴∠6=60°.

∴∠5=180°-∠6=120°.………②

∴由①②得∠MCN=∠5.

在△AEM和△MCN中,

∵________________________________

∴△AEM≌△MCN (ASA).∴AMMN

(2)若將試題中的“正三角形ABC”改為“正方形A1B1C1D1”(如圖),N1是∠D1C1P1的平分線上一點,則當∠A1M1N1=90°時,結論A1M1M1N1.是否還成立?(直接寫出答案,不需要證明)

(3) 若將題中的“正三角形ABC”改為“正多邊形AnBnCnDnXn”,請你猜想:當∠AnMnNn    °時,結論AnMnMnNn仍然成立?(直接寫出答案,不需要證明)

 

查看答案和解析>>

科目:初中數學 來源: 題型:

數學課堂上,徐老師出示一道試題:
如圖(十)所示,在正三角形ABC中,M是BC邊(不含端點B、C)上任意一點,P是BC延長線上一點,N是∠ACP的平分線上一點.若∠AMN=60°,求證:AM=MN.
(1)經過思考,小明展示了一種正確的證明過程.請你將證明過程補充完整.
證明:在AB上截取EA=MC,連結EM,得△AEM.
∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.
又CN平分∠ACP,∠4=∠ACP=60°.∴∠MCN=∠3+∠4=120°…………①
又∵BA=BC,EA=MC,∴BA-EA=BC-MC,即BE=BM.
∴△BEM為等邊三角形.∴∠6=60°.
∴∠5=180°-∠6=120°.………②
∴由①②得∠MCN=∠5.
在△AEM和△MCN中,
                                            
∴△AEM≌△MCN (ASA).∴AM=MN.
(2)若將試題中的“正三角形ABC”改為“正方形A1B1C1D1”(如圖),N1是∠D1C1P1的平分線上一點,則當∠A1M1N1=90°時,結論A1M1=M1N1.是否還成立?(直接寫出答案,不需要證明)
(3) 若將題中的“正三角形ABC”改為“正多邊形AnBnCnDn…Xn”,請你猜想:當∠AnMnNn   °時,結論AnMn=MnNn仍然成立?(直接寫出答案,不需要證明)
    

查看答案和解析>>

科目:初中數學 來源:2011年初中畢業升學考試(山東泰安卷)數學解析版 題型:解答題

數學課堂上,徐老師出示一道試題:如圖(十)所示,在正三角形ABC中,MBC邊(不含端點BC)上任意一點,PBC延長線上一點,N是∠ACP的平分線上一點.若∠AMN=60°,求證:AMMN

    

(1)經過思考,小明展示了一種正確的證明過程.請你將證明過程補充完整.

證明:在AB上截取EAMC,連結EM,得△AEM

∵∠1=180°-∠AMB-∠AMN2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.

CN平分∠ACP,∠4=∠ACP=60°.∴∠MCN=∠3+∠4=120°…………①

又∵BABCEAMC,∴BAEABCMC,即BEBM

∴△BEM為等邊三角形.∴∠6=60°.

∴∠5=180°-∠6=120°.………②

∴由①②得∠MCN=∠5.

在△AEM和△MCN中,

∵________________________________

∴△AEM≌△MCN (ASA).∴AMMN

(2)若將試題中的“正三角形ABC”改為“正方形A1B1C1D1”(如圖),N1是∠D1C1P1的平分線上一點,則當∠A1M1N1=90°時,結論A1M1M1N1.是否還成立?(直接寫出答案,不需要證明)

(3) 若將題中的“正三角形ABC”改為“正多邊形AnBnCnDnXn”,請你猜想:當∠AnMnNn    °時,結論AnMnMnNn仍然成立?(直接寫出答案,不需要證明)

 

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 一区二区亚洲 | 最新日韩在线观看视频 | 日本黄在线 | 国产精品久久免费看 | 欧美一区二区三区在线视频 | 国产精品一区二区不卡 | 成人欧美一区二区三区色青冈 | 欧美一区二区三区在线观看 | 毛片久久久 | 日韩电影a | 污视频网站在线观看 | 日韩免费福利视频 | 福利片免费观看 | 在线视频91 | 禁果av一区二区三区 | 久久e久久 | 日韩精品视频在线播放 | 日韩在线免费观看av | 激情伊人 | 狠狠干狠狠操 | 91精品久久久久久久久 | 国产精品久久久久久久久久东京 | 亚洲精品色 | av中文字幕网 | 欧美视频一区二区三区在线观看 | 欧美男人天堂 | 亚洲福利片 | 国产一区二区视频在线观看 | 欧美日韩中文在线 | www.99re | 亚洲国产精品精华液网站 | 亚洲久久 | 欧美一区2区三区4区公司二百 | 日韩在线国产精品 | 日韩中文字幕在线观看 | 国产精品人成在线播放 | 草逼网首页 | 97久久精品 | 国产区久久| 免费的av在线 | 欧美韩一区二区 |