【題目】某學校為了解全校學生對電視節目的喜愛情況(新聞、體育、動畫、娛樂、戲曲),從全校學生中隨機抽取部分學生進行問卷調查,并把調查結果繪制成兩幅不完整的統計圖.
請根據以上信息,解答下列問題:
(1)這次被調查的學生共有多少人?
(2)請將條形統計圖補充完整;
(3)若該校約有1500名學生,估計全校學生中喜歡娛樂節目的有多少人?
(4)該校廣播站需要廣播員,現決定從喜歡新聞節目的甲、乙、丙、丁四名同學中選取2名,求恰好選中甲、乙兩位同學的概率(用樹狀圖或列表法解答)
【答案】(1)50人;(2)補圖見解析;(3)540人;(4)
【解析】(1)根據動畫類人數及其百分比求得總人數;
(2)總人數減去其他類型人數可得體育類人數,據此補全圖形即可;
(2)用樣本估計總體的思想解決問題;
(3)根據題意先畫出樹狀圖,得出所有情況數,再根據概率公式即可得出答案.
(1)這次被調查的學生人數為15÷30%=50人;
(2)喜愛“體育”的人數為50﹣(4+15+18+3)=10人,補全圖形如下:
(3)估計全校學生中喜歡娛樂節目的有1500×=540人;
(4)列表如下:
所有等可能的結果為12種,恰好選中甲、乙兩位同學的有2種結果,所以恰好選中甲、乙兩位同學的概率為=
.
科目:初中數學 來源: 題型:
【題目】如圖,以線段AB為直徑作⊙O,CD與⊙O相切于點E,交AB的延長線于點D, 連接BE,過點O作OC∥BE交切線DE于點C,連接AC .
(1)求證:AC是⊙O的切線 ;
(2)若BD=OB=4,求弦AE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題情境
在綜合與實踐課上,老師讓同學們以“兩條平行線AB,CD和一塊含60°角的直角三角尺EFG(∠EFG=90°,∠EGF=60°)”為主題開展數學活動.
操作發現
(1)如圖(1),小明把三角尺的60°角的頂點G放在CD上,若∠2=2∠1,求∠1的度數;
(2)如圖(2),小穎把三角尺的兩個銳角的頂點E、G分別放在AB和CD上,請你探索并說明∠AEF與∠FGC之間的數量關系;
結論應用
(3)如圖(3),小亮把三角尺的直角頂點F放在CD上,30°角的頂點E落在AB上.若∠AEG=α,則∠CFG等于______(用含α的式子表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】用同樣規格的黑、白兩種顏色的正方形瓷磚按下圖所示的方式鋪寬為1.5米的小路.
(1)鋪第5個圖形用黑色正方形瓷磚 塊;
(2)按照此方式鋪下去,鋪第 n 個圖形用黑色正方形瓷磚 塊;(用含 n的代數式表示)
(3)若黑、白兩種顏色的瓷磚規格都為( 長0.5米寬0.5米),且黑色正方形瓷磚每塊價格 25 元,白色正方形瓷磚每塊價格30元,若按照此方式恰好鋪滿該小路某一段(該段小路的總面積為 18.75 平方米),求該段小路所需瓷磚的總費用.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是某月的月歷,用如圖恰好能完全遮蓋住月歷表中的五個數字,設帶陰影的“”形中的5個數字的最小數為a.
請用含a的代數式表示這5個數;
這五個數的和與“
”形中心的數有什么關系?
蓋住的5個數字的和能為105嗎?為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下面材料.
在數學課上,老師請同學思考如下問題:
已知:如圖①,在△ABC中,∠A=90°.
圖①
求作:⊙P,使得點P在邊AC上,且⊙P與AB,BC都相切.
小軒的主要作法如下:
如圖②,
圖②
(1)作∠ABC的平分線BF,與AC交于點P;
(2)以P為圓心,AP長為半徑作⊙P,則⊙P即為所求.
老師說:“小軒的作法正確.”
請回答:⊙P與BC相切的依據是 ____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知:∠BAC的平分線與BC的垂直平分線DG相交于點D,DE⊥AB,DF⊥AC,垂足分別為E、F,AB=6,AC=3,則BE=_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,有一個水池,其底面是邊長為16尺的正方形,一根蘆葦AB生長在它的正中央,高出水面部分BC的長為2尺,如果把該蘆葦沿與水池邊垂直的方向拉向岸邊,那么蘆葦的頂部B恰好碰到岸邊的B′,則這根蘆葦AB的長是( )
A. 15尺B. 16尺C. 17尺D. 18尺
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com