【題目】閱讀材料:已知實(shí)數(shù)m、n滿足,求
的值.
解:設(shè),則原方程可化為(t+1)(t-1)=35,整理得t2-1=35,t2=36,
∴t=±6,
∵,
∴
上面這種解題方法為“換元法”,在結(jié)構(gòu)較復(fù)雜的數(shù)和式的運(yùn)算中,若把其中某些部分看成一個(gè)整體,則能使復(fù)雜的問(wèn)題簡(jiǎn)單化,根據(jù)“換元法”解決下列問(wèn)題:
(1)已知實(shí)數(shù)x、y滿足,求
的值;
(2)若四個(gè)連續(xù)正整數(shù)的積為360,求這四個(gè)連續(xù)的正整數(shù).
【答案】(1);(2)這四個(gè)連續(xù)的正整數(shù)分別是3,4,5,6.
【解析】
(1)設(shè)將原方程可化為
并求解即得.
(2)設(shè)最小的正整數(shù)為,則另外三個(gè)正整數(shù)分別為
、
、
,可根據(jù)題意得出
,變形為
,再設(shè)
,并換元為關(guān)于
的一元二次方程求解,進(jìn)而再解關(guān)于
的方程即得.
解:(1)設(shè),
則原方程可化為,
整理得,
解得,
∵,
∴
∴;
(2)設(shè)最小的正整數(shù)為,則另外三個(gè)正整數(shù)分別為
、
、
,
根據(jù)題意得:,
,
,
設(shè),則原方程為
,
整理得,
∴
∴
∴,∴
,
,
∵,∴
,∴
.
∴,解得
,
(舍去).
∴這四個(gè)連續(xù)的正整數(shù)分別是3,4,5,6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,C、D為⊙O上不同于A、B的兩點(diǎn),∠ABD=2∠BAC,連接CD,過(guò)點(diǎn)C作CE⊥DB,垂足為E,直徑AB與CE的延長(zhǎng)線相交于F點(diǎn).
(1)求證:CF是⊙O的切線;
(2)當(dāng)BD=,sinF=
時(shí),求OF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,C、D為⊙O上的點(diǎn),P為圓外一點(diǎn),PC、PD均與圓相切,設(shè)∠A+∠B=130°,∠CPD=β,則β=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 鄭州某商場(chǎng)在“六一”兒童節(jié)購(gòu)進(jìn)一批兒童智力玩具.已知成批購(gòu)進(jìn)時(shí)單價(jià)20元,調(diào)查發(fā)現(xiàn):該玩具的月銷售量y(個(gè))與銷售單價(jià)x(元)之間滿足一次函數(shù)關(guān)系,下表是月銷售量、銷售單價(jià)的幾組對(duì)應(yīng)關(guān)系:
月銷售單價(jià)x/元 | 30 | 35 | 40 | 45 |
月銷售量y/個(gè) | 230 | 180 | 130 | m |
(1)求y與x的函數(shù)關(guān)系式;
(2)根據(jù)以上信息填空:
①m=______;
②當(dāng)銷售單價(jià)x=______元時(shí),月銷售利潤(rùn)最大,最大利潤(rùn)是______元;
(3)根據(jù)物價(jià)部門規(guī)定,每件玩具售價(jià)不能高于40元,若月銷售利潤(rùn)不低于2520元,試求銷售單價(jià)x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某氣球內(nèi)充滿了一定質(zhì)量的氣體,當(dāng)溫度不變時(shí),氣球內(nèi)氣體的氣壓p(單位:千帕)隨氣體體積V(單位:立方米)的變化而變化,p隨V的變化情況如表所示.
P | 1.5 | 2 | 2.5 | 3 | 4 | … |
V | 64 | 48 | 38.4 | 32 | 24 | … |
(1)寫出一個(gè)符合表格數(shù)據(jù)的p關(guān)于V的函數(shù)解析式
(2)當(dāng)氣球內(nèi)的氣壓大于144千帕?xí)r,氣球?qū)⒈ǎ勒眨?/span>1)中的函數(shù)解析式,基于安全考慮,氣球的體積至少為多少立方米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(﹣1,0),點(diǎn)C(0,5),另拋物線經(jīng)過(guò)點(diǎn)(1,8),M為它的頂點(diǎn).
(1)求拋物線的解析式;
(2)求△MCB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC是邊長(zhǎng)為4的等邊三角形,邊AB在射線OM上,且OA=6,點(diǎn)D是射線OM上的動(dòng)點(diǎn),當(dāng)點(diǎn)D不與點(diǎn)A重合時(shí),將△ACD繞點(diǎn)C逆時(shí)針?lè)较蛐D(zhuǎn)60°得到△BCE,連接DE,設(shè)OD=m.
(1)問(wèn)題發(fā)現(xiàn)
如圖1,△CDE的形狀是 三角形.
(2)探究證明
如圖2,當(dāng)6<m<10時(shí),△BDE的周長(zhǎng)是否存在最小值?若存在,求出△BDE周長(zhǎng)的最小值;若不存在,請(qǐng)說(shuō)明理由.
(3)解決問(wèn)題
是否存在m的值,使△DEB是直角三角形?若存在,請(qǐng)直接寫出m的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,AB為半圓O的直徑,半徑的長(zhǎng)為4cm,點(diǎn)C為半圓上一動(dòng)點(diǎn),過(guò)點(diǎn)C作CE⊥AB,垂足為點(diǎn)E,點(diǎn)D為弧AC的中點(diǎn),連接DE,如果DE=2OE,求線段AE的長(zhǎng).
小何根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),將此問(wèn)題轉(zhuǎn)化為函數(shù)問(wèn)題解決.
小華假設(shè)AE的長(zhǎng)度為xcm,線段DE的長(zhǎng)度為ycm.
(當(dāng)點(diǎn)C與點(diǎn)A重合時(shí),AE的長(zhǎng)度為0cm),對(duì)函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行探究.
下面是小何的探究過(guò)程,請(qǐng)補(bǔ)充完整:(說(shuō)明:相關(guān)數(shù)據(jù)保留一位小數(shù)).
(1)通過(guò)取點(diǎn)、畫(huà)圖、測(cè)量,得到了x與y的幾組值,如下表:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
y/cm | 0 | 1.6 | 2.5 | 3.3 | 4.0 | 4.7 |
| 5.8 | 5.7 |
當(dāng)x=6cm時(shí),請(qǐng)你在圖中幫助小何完成作圖,并使用刻度尺度量此時(shí)線段DE的長(zhǎng)度,填寫在表格空白處:
(2)在圖2中建立平面直角坐標(biāo)系,描出補(bǔ)全后的表中各組對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫(huà)出該函數(shù)的圖象;
(3)結(jié)合畫(huà)出的函數(shù)圖象解決問(wèn)題,當(dāng)DE=2OE時(shí),AE的長(zhǎng)度約為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為H,連接AC,過(guò)上一點(diǎn)E作EG∥AC交CD的延長(zhǎng)線于點(diǎn)G,連接AE交CD于點(diǎn)F,且EG=FG.
(1)求證:EG是⊙O的切線;
(2)延長(zhǎng)AB交GE的延長(zhǎng)線于點(diǎn)M,若AH=2,,求OM的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com