日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
閱讀以下材料并填空:平面上有n個點(n≥2)且任意三個點不在同一直線上,過這些點作直線一共能作出多少條不同的直線?分析:當僅有兩個點時,可連成1條直線;當有3個點時,可連成3條直線;當有4個點時,可連成6條直線,當有5個點時可連成10條直線…推導:平面上有n個點,因為兩點可確定一條直線,所以每個點都可與除本身之外的其余(n﹣1)個點確定一條直線,即共有n(n﹣1)條直線.但因AB與BA是同一條直線,故每一條直線都數了2遍,所以直線的實際總條數為
試結合以上信息,探究以下問題:平面上有n(n≥3)個點,任意3個點不在同一直線上,過任意3點作三角形,一共能作出多少個不同的三角形?
分析:考察點的個數n和可作出的三角形的個數 sn,發現:(填下表)
推到:                                                                 
解:順次連接不在同一直線上的三個點可作1個三角形;當有4個點時,可作4個三角形;當有5個點時,可作10個三角形;
依次類推當有n個點時,可作個三角形.
答案:1、4、10、
平面上有n個點,過不在同一直線上的三點可以確定1個三角形,取第一個點A有n種取法,取第二個點B有(n﹣1)種取法.取第三個點C有(n﹣2)種取法,
但△ABC、△ACB、△BAC、△BCA、△CAB、△CBA是同一個三角形,故應除以6,
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:閱讀理解

閱讀以下材料并填空:
問題:當x滿足什么條件時,x>
1
x

解:設y1=x,y2=
1
x
則在同一直角坐標系中畫出這兩個函數的草圖.
聯立兩個函數的解析式得:
y1=x
y2=
1
x
,解得
x=1
y=1
x=-1
y=-1
∴兩個圖象的交點為(1,1)和(-1,-1)
∴由圖可知,當-1<x<0或x>1時,x>
1
x
(1)上述解題過程用的數學思想方法是
 

(2)根據上述解題過程,試猜想x<
1
x
時,x的取值范圍是
 

(3)試根據上述解題方法,當x滿足什么條件時,x2
1
x
.(要求畫出草圖)
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:閱讀理解

閱讀以下材料并填空.
平面上有n個點(n≥2),且任意三個點不在同一條直線上,過這些點作直線,一共能作出多少條不同的直線?
試探究以下問題:平面上有n(n≥3)個點,任意三個點不在同一直線上,過任意三點作三角形,一共能作出多少不同的三角形?
(1)分析:當僅有兩個點時,可連成1條直線;當僅有3個點時,可作
 
條直線;當有4個點時,可作
 
條直線;當有5個點時,可作
 
條直線;
(2)歸納:考察點的個數n和可作出的直線的條數Sn,發現:(填下表)
點的個數 可連成直線的條數
2  
3  
4  
5  
 
n  
(3)推理:
 

(4)結論:
 

查看答案和解析>>

科目:初中數學 來源: 題型:閱讀理解

閱讀以下材料并填空.
平面上有n個點(n≥2),且任意三個點不在同一直線上,過這些點作直線,一共能作出多少條不同的直線?
(1)分析:當僅有兩個點時,可連成1條直線;
當有3個點時,可連成3條直線;
當有4個點時,可連成6條直線;
當有5個點時,可連成10條直線;

(2)歸納:考察點的個數n和可連成直線的條數Sn,發現:
(3)推理:平面上有n個點,兩點確定一條直線.取第一個點A有n種取法,取第二個點B有(n-1)種取法,所以一共可連成n(n-1)條直線,但AB與BA是同一條直線,故應除以2,即Sn=
n(n-1)
2

(4)結論:Sn=
n(n-1)
2

點的個數 可連成直線條數
2  l=S2=
2×1
2
3 3=S3=
3×2
2
4  6=S4=
4×3
2
5  10=S5=
5×4
2
n  Sn=
n(n-1)
2
試探究以下問題:
平面上有n(n≥3)個點,任意三個點不在同一直線上,過任意三點作三角形,一共能作出多少不同的三角形?
①分析:
當僅有3個點時,可作
 
個三角形;
當有4個點時,可作
 
個三角形;
當有5個點時,可作
 
個三角形;

②歸納:考察點的個數n和可作出的三角形的個數Sn,發現:
點的個數 可連成三角形個數
3  
4  
5  
n  
③推理:
 

取第一個點A有n種取法,
取第二個點B有(n-1)種取法,
取第三個點C有(n-2)種取法,
但△ABC、△ACB、△BAC、△BCA、△CAB、△CBA是同一個三角形,故應除以6.
④結論:
 

查看答案和解析>>

科目:初中數學 來源: 題型:閱讀理解

閱讀以下材料并填空:平面上有n個點(n≥2)且任意三個點不在同一直線上,過這些點作直線一共能作出多少條不同的直線?
分析:當僅有兩個點時,可連成1條直線;當有3個點時,可連成3條直線;當有4個點時,可連成6條直線,當有5個點時可連成10條直線…
推導:平面上有n個點,因為兩點可確定一條直線,所以每個點都可與除本身之外的其余(n-1)個點確定一條直線,即共有
n(n-1)條直線.但因AB與BA是同一條直線,故每一條直線都數了2遍,所以直線的實際總條數為
n(n-1)
2

試結合以上信息,探究以下問題:
平面上有n(n≥3)個點,任意3個點不在同一直線上,過任意3點作三角形,一共能作出多少個不同的三角形?
分析:考察點的個數n和可作出的三角形的個數 sn,發現:(填下表)
點的個數 可連成的三角形的個數
3
1
1
4
4
4
5
10
10
n
n(n-1)(n-2)
6
n(n-1)(n-2)
6
推導:
平面上有n個點,過不在同一直線上的三點可以確定1個三角形,取第一個點A有n種取法,取第二個點B有(n-1)種取法.取第三個點C有(n-2)種取法,但△ABC、△ACB、△BAC、△BCA、△CAB、△CBA是同一個三角形,故應除以6,即Sn=
n(n-1)(n-2)
6
平面上有n個點,過不在同一直線上的三點可以確定1個三角形,取第一個點A有n種取法,取第二個點B有(n-1)種取法.取第三個點C有(n-2)種取法,但△ABC、△ACB、△BAC、△BCA、△CAB、△CBA是同一個三角形,故應除以6,即Sn=
n(n-1)(n-2)
6

查看答案和解析>>

科目:初中數學 來源:2009年福建省福州市平潭縣城關中學數學模擬考試卷(解析版) 題型:解答題

閱讀以下材料并填空:
問題:當x滿足什么條件時,x>
解:設y1=x,y2=則在同一直角坐標系中畫出這兩個函數的草圖.
聯立兩個函數的解析式得:,解得∴兩個圖象的交點為(1,1)和(-1,-1)
∴由圖可知,當-1<x<0或x>1時,x>(1)上述解題過程用的數學思想方法是______;
(2)根據上述解題過程,試猜想x<時,x的取值范圍是______;
(3)試根據上述解題方法,當x滿足什么條件時,x2.(要求畫出草圖)

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 欧美久久综合 | 日本精品久久久一区二区三区 | 久久久国产精品入口麻豆 | 日本精品一区二区三区视频 | 在线观看黄av | 精品一二三区在线观看 | www国产亚洲精品久久网站 | 国产精品久久久久久久久久久久久久 | 精品久久久久久久久久久 | 久久久久久久久久久成人 | 欧美精品在线看 | 国产精品人人做人人爽人人添 | 亚洲精品免费在线观看 | 黄色影院在线观看 | 黄色日批视频 | 曰韩精品一区二区 | 日韩中字在线观看 | 98精品国产高清在线xxxx天堂 | 在线观看91 | 青青草97| 亚洲清色| 综合久久久久久久 | 99视频在线免费观看 | 日韩有码在线播放 | 九色在线 | 精品国产欧美一区二区三区成人 | 日韩一区二区三区在线观看 | 亚州中文字幕 | 久久久久久久91 | 美女脱了内裤张开腿让密密麻麻 | 亚洲视频中文字幕 | 久热热 | 一区二区三区高清不卡 | 在线观看成人小视频 | 一区二区三区视频在线播放 | 伊人爽| 一级黄色片子免费看 | 久久精品亚洲一区二区 | 亚洲美女视频一区二区三区 | 蜜桃av在线播放 | 国产精品精品视频一区二区三区 |