【題目】如圖,點O為矩形ABCD的對稱中心,AB=5cm,BC=6cm,點E.F.G分別從A.B.C三點同時出發,沿矩形的邊按逆時針方向勻速運動,點E的運動速度為1cm/s,點F的運動速度為3cm/s,點G的運動速度為1.5cm/s,當點F到達點C(即點F與點C重合)時,三個點隨之停止運動.在運動過程中,△EBF關于直線EF的對稱圖形是△EB′F.設點E.F.G運動的時間為t(單位:s).
(1)當t等于多少s時,四邊形EBFB′為正方形;
(2)若以點E、B、F為頂點的三角形與以點F,C,G為頂點的三角形相似,求t的值;
(3)是否存在實數t,使得點B’與點O重合?若存在,求出t的值;若不存在,請說明理由.
【答案】(1)t=1.25;(2)當t=1.4s或t=(﹣7+)s時,以點E、B、F為頂點的三角形與以點F,C,G為頂點的三角形相似;(3)不存在實數t,使得點B′與點O重合.理由見解析.
【解析】
(1)利用正方形的性質,得到BE=BF,列一元一次方程求解即可;
(2)△EBF與△FCG相似,分兩種情況,需要分類討論,逐一分析計算;
(3)本問為存在型問題.假設存在,則可以分別求出在不同條件下的t值,它們互相矛盾,所以不存在
(1)若四邊形EBFB′為正方形,則BE=BF,BE=5﹣t,BF=3t,
即:5﹣t=3t,
解得t=1.25;
故答案為:1.25;
(2)分兩種情況,討論如下:
①若△EBF∽△FCG,
則有,即
,
解得:t=1.4;
②若△EBF∽△GCF,
則有,即
,
解得:t=﹣7﹣(不合題意,舍去)或t=﹣7+
.
∴當t=1.4s或t=(﹣7+)s時,以點E、B、F為頂點的三角形與以點F,C,G為頂點的三角形相似.
(3)假設存在實數t,使得點B′與點O重合.
如圖,過點O作OM⊥BC于點M,則在Rt△OFM中,OF=BF=3t,FM=BC﹣BF=3﹣3t,OM=2.5,
由勾股定理得:OM2+FM2=OF2,
即:2.52+(3﹣3t)2=(3t)2
解得:t=;
過點O作ON⊥AB于點N,則在Rt△OEN中,OE=BE=5﹣t,EN=BE﹣BN=5﹣t﹣2.5=2.5﹣t,ON=3,
由勾股定理得:ON2+EN2=OE2,
即:32+(2.5﹣t)2=(5﹣t)2
解得:t=.
∵≠
,
∴不存在實數t,使得點B′與點O重合.
科目:初中數學 來源: 題型:
【題目】某校興趣小組就“最想去的金華最美村落”隨機調查了本校部分學生,要求每位同學選擇且只能選擇一個最想去的最美鄉村下面是根據調查結果繪制出的不完整的統計圖
請根據圖中提供的信息,解答下列問題:
被調查的學生總人數為______人;
扇形統計圖中“最想去鄉村D”的扇形圓心角的度數為______;
若該校共有800名學生,請估計“最想去鄉村B”的學生人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀材料:求1+2+22+23+24+…+22017
首先設S=1+2+22+23+24+…+22017 ① 則2S=2+22+23+24+25+…+22018 ②
②﹣①得S=22018﹣1 即1+2+22+23+24+…+22017=22018﹣1
以上解法,在數列求和中,我們稱之為:“錯位相減法”
請你根據上面的材料,解決下列問題
(1)求1+3+32+33+34+…+32019的值
(2)若a為正整數且,求
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】每年的6月5日為世界環保日,為了提倡低碳環保,某公司決定購買10臺節省能源的新設備,現有甲、乙兩種型號的設備可供選購. 經調查:購買3臺甲型設備比購買2臺乙型設備多花16萬元,購買2臺甲型設備比購買3臺乙型設備少花6萬元.
(1)求甲、乙兩種型號設備的價格;
(2)該公司經預算決定購買節省能源的新設備的資金不超過110萬元,你認為該公司有哪幾種購買方案;
(3)在(2)的條件下,已知甲型設備的產量為240噸/月,乙型設備的產量為180噸/月.若每月要求總產量不低于2040噸,為了節約資金,請你為該公司設計一種最省錢的購買方案.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點D,E在線段BC上,△ADE是等邊三角形,且∠BAC=120°
(1)求證:△ABD∽△CAE;
(2)若BD=2,CE=8,求BC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某課桌生產廠家研究發現,傾斜12°~24°的桌面有利于學生保持軀體自然姿勢.根據這一研究,廠家決定將水平桌面做成可調節角度的桌面.新桌面的設計圖如圖1,AB可繞點A旋轉,在點C處安裝一根可旋轉的支撐臂CD,AC=30 cm.
(1)如圖2,當∠BAC=24°時,CD⊥AB,求支撐臂CD的長;
(2)如圖3,當∠BAC=12°時,求AD的長.(結果保留根號)
(參考數據:sin 24°≈0.40,cos 24°≈0.91,tan 24°≈0.46,sin 12°≈0.20)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在口ABCD中,分別以邊BC,CD作等腰△BCF,△CDE,使BC=BF,CD=DE,∠CBF=∠CDE,連接AF,AE.
(1)求證:△ABF≌△EDA;
(2)延長AB與CF相交于G,若AF⊥AE,求證BF⊥BC.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com