日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情

如圖,將一把直角三角板的直角頂點置于平面直角坐標系的原點O,兩直角邊與拋物線y=ax2(a<0)交于A、B兩點,請解答以下問題:

(1)若測得OA=OB=2數學公式(如圖1),求a的值;
(2)對同一條拋物線,將三角板繞點O旋轉到如圖2所示位置時,過B作BF⊥x軸于點F,測得OF=1,寫出此時點B的坐標,并求點A的橫坐標;
(3)對該拋物線,將三角板繞點O旋轉任意角度時,交點A、B的連線段總經過一個固定的點,試求出該點的坐標.

解:(1)設線段AB與y軸的交點為C,由拋物線的對稱性可得C為AB中點,
∵OA=OB=2,∠AOB=90°,
∴AC=OC=BC=2,∴B(2,-2),
將B(2,-2)代入拋物線y=ax2(a<0)得,a=-

(2)過點A作AE⊥x軸于點E,
∵點B的橫坐標為1,∴B (1,-),
設A(-m,-m 2)(m>0),則
OB2=12+(2=,OA2=m2+m4,AB2=(1+m)2+(-+m22,
∵∠AOB=90°,∴AB2=OA2+OB2,
∴(1+m)2+(-+m22=m2+m4+,
解得:m=0(不合題意舍去)或m=4,即點A的橫坐標為-4.

(3)解法一:設A(-m,-m 2)(m>0),B(n,-n 2)(n>0),
設直線AB的解析式為:y=kx+b,則,
①×n+②×m得,(m+n)b=-(m2n+mn2)=-mn(m+n),
∴b=-mn,
由前可知,OB2=n2+n4,OA2=m2+m4,AB2=(n+m)2+(-m2+n22,
由AB2=OA2+OB2,得:n2+n4+m2+m4=(n+m)2+(-m2+n22,
化簡,得mn=4.
∴b=-×4=-2.由此可知不論k為何值,直線AB恒過點(0,-2),

解法二:設A(-m,-m 2)(m>0),B(n,-n 2)(n>0),
直線AB與y軸的交點為C,根據S△AOB=S梯形ABFE-S△AOE-S△BOF=S△AOC+S△BOC,可得
×(m2+n2)(m+n)-m2-n2=CO•m+CO•n
化簡,得CO=mn,
由前可知,OB2=n2+n4,OA2=m2+m4,AB2=(n+m)2+(-m2+n22
由AB2=OA2+OB2,得:n2+n4+m2+m4=(n+m)2+(-m2+n22,
化簡,得mn=4.
∴OC=2為固定值.故直線AB恒過其與y軸的交點C(0,-2).
分析:(1)根據拋物線的對成性,先求出B點坐標,代入拋物線y=ax2(a<0)得a的值;
(2)過點A作AE⊥x軸于點E,可利用AB2=OA2+OB2,求出點A的橫坐標.
(3)首先設A(-m,-m2)(m>0),B(n,-n2)(n>0),表示出直線AB解析式中b=-mn,再利用勾股定理得出mn=4,進而得出直線AB恒過其與y軸的交點C(0,-2).
點評:此題考查了拋物線的對稱性和勾股定理以及一元二次方程解法,第(3)問求出mn=4是解題的關鍵,綜合性較強,有一定的難度.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2012•鎮江模擬)如圖,將一把直角三角板的直角頂點放置于原點O,兩直角邊與拋物線y=x2交于M、N兩點,設M、N的橫坐標分別為m、n(m>0,n<0);請解答下列問題:
(1)當m=1時,n=
-1
-1
;當m=2時,n=
-
1
2
-
1
2
.試猜想m與n滿足的關系,并證明你猜想的結論.
(2)連接M、N,若△OMN的面積為S,求S關于m的函數關系式.
(3)當三角板繞點O旋轉到某一位置時,恰好使得∠MNO=30°,此時過M作MA⊥x軸,垂足為A,求出△OMA的面積.
(4)當m=2時,拋物線上是否存在一點P使M、N、O、P四點構成梯形?若存在,直接寫出所有滿足條件的點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,將一把直角三角板的直角頂點置于平面直角坐標系的原點O,兩直角邊與拋物線y=ax2(a<0)交于A、B兩點,請解答以下問題:

(1)若測得OA=OB=2
2
(如圖1),求a的值;
(2)對同一條拋物線,將三角板繞點O旋轉到如圖2所示位置時,過B作BF⊥x軸于點F,測得OF=1,寫出此時點B的坐標,并求點A的橫坐標;
(3)對該拋物線,將三角板繞點O旋轉任意角度時,交點A、B的連線段總經過一個固定的點,試求出該點的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,將一把直角三角板的直角頂點放置于原點O,兩直角邊與拋物線交于M、N兩點,設M、N的橫坐標分別為m、n(m﹥0,n﹤0);請解答下列問題:
【小題1】當m=1時,n=__ ▲ ; 當m=2時,n=__ ▲ 試猜想m與n滿足的關系,并證明你猜想的結論。
【小題2】連接M、N,若△OMN的面積為S,求S關于m的函數關系式。
【小題3】當三角板繞點O旋轉到某一位置時,恰好使得∠MNO=30°,此時過M作MA⊥x軸,垂足為A,求出△OMA的面積
【小題4】當m=2時,拋物線上是否存在一點P使M、N、O、P四點構成梯形,若存在,直接寫出所有滿足條件的點P的坐標;若不存在,說明理由。

查看答案和解析>>

科目:初中數學 來源:2012年江西省贛州市定南縣三中片區九年級數學全能競賽試卷(解析版) 題型:解答題

如圖,將一把直角三角板的直角頂點置于平面直角坐標系的原點O,兩直角邊與拋物線y=ax2(a<0)交于A、B兩點,請解答以下問題:

(1)若測得OA=OB=2(如圖1),求a的值;
(2)對同一條拋物線,將三角板繞點O旋轉到如圖2所示位置時,過B作BF⊥x軸于點F,測得OF=1,寫出此時點B的坐標,并求點A的橫坐標;
(3)對該拋物線,將三角板繞點O旋轉任意角度時,交點A、B的連線段總經過一個固定的點,試求出該點的坐標.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产猛男猛女超爽免费视频网站 | 国产成人综合网 | 日韩av一区二区在线观看 | 成人在线网 | 91免费观看在线 | 91在线综合 | 日韩中文字幕在线 | 欧美日韩免费看 | av一区二区三区四区 | 欧美日韩亚洲视频 | 成人黄色电影在线观看 | 欧美日韩中文国产一区发布 | 蜜桃精品视频在线 | 韩国精品在线 | 欧美精品欧美极品欧美激情 | 亚洲女人天堂色在线7777 | 中文字幕国产视频 | 久久资源av | 五月激情综合婷婷 | 亚洲第一视频 | 午夜精品一区二区三区在线播放 | 日韩成人av网站 | 视频一区二区中文字幕日韩 | 全免一级毛片 | 日韩免费网站 | 第一色综合| 久久久久国产精品午夜一区 | 婷婷精品久久久久久久久久不卡 | 一区二区三 | 在线免费精品 | 国产大胆自拍 | 可以免费看av的网址 | 综合久久综合久久 | 久久久久久久久久穴 | 成年无码av片在线 | 久草电影网 | 精品国产三级 | 簧片免费网站 | 毛片网站在线观看 | 一区二区精品视频 | 在线看亚洲 |