如圖1,在平面直角坐標系中,點A、C分別在軸、
軸上,四邊形OABC是面積為4的正方形,函數
(
>0)的圖象經過點B.
(1)= ;
(2)如圖2,將正方形OABC分別沿直線AB、BC翻折,得到正方形MABC′和正方形MA′BC.設線段MC′、NA′分別與函數 (
>0)的圖象交于點E、F,則點E、F的坐標分別為:E ( , ) ,F ( , );
(3)如圖3,面積為4的正方形ABCD的頂點A、B分別在軸、
軸上,頂點C、D在反比例函數
(
>0)的圖像上,試求OA、OB的長。(請寫出必要的解題過程)
(1)k=4;(2)E(4,1),F(1,4);(3)OA=OB=
解析試題分析:(1)根據反比例函數的比例系數k的幾何意義即可求得結果;
(2)根據正方形的面積公式結合折疊的性質即可求得結果;
(3)作DE⊥軸于E,CF⊥
軸于F,ED、FC交與G.,易證△AOB≌△BFC≌△CGD≌△DEA,設OA=BF=CG=DE=a,OB=FC=GD=EA=b,由
的幾何意義得:a(a+b)=b(b+a),所以a=b即OA=OB,根據正方形的面積公式即可求得結果.
(1)∵函數(
>0)的圖象經過點B,四邊形OABC是面積為4的正方形
∴k=4;
(2)∵四邊形OABC是面積為4的正方形
∴B(2,2)
∵將正方形OABC分別沿直線AB、BC翻折,得到正方形MABC′和正方形MA′BC
∴E(4,1),F(1,4);
(3)作DE⊥軸于E,CF⊥
軸于F,ED、FC交與G
易證△AOB≌△BFC≌△CGD≌△DEA,
設OA=BF=CG=DE=a,OB=FC=GD=EA=b
由的幾何意義得:a(a+b)=b(b+a),
所以a=b即OA=OB,由正方形的面積為4,可得AB=2,所以OA=OB=。
考點:反比例函數的綜合題
點評:函數的綜合題是初中數學的重點和難點,在中考中極為常見,一般以壓軸題形式出現,難度較大.
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:
2 |
2 |
2 |
2 |
2 |
查看答案和解析>>
科目:初中數學 來源:同步輕松練習 八年級 數學 上 題型:059
學校閱覽室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2張方桌拼成一行能坐6人(如圖)
(1)按照這種規定填寫下表:
(2)根據表中的數據,將s作為縱坐標,n作為橫坐標,在如圖所示的平面直角坐標系中找出相應各點.
(3)請你猜一猜上述各點會在某一個函數圖象上嗎?如果在某一函數圖象上,求出該函數的解析式,并利用你探求的結果,求出當n=10時,s的值.
查看答案和解析>>
科目:初中數學 來源:2013-2014學年北京海淀區九年級第一學期期中測評數學試卷(解析版) 題型:解答題
閱讀下面的材料:
小明在研究中心對稱問題時發現:
如圖1,當點為旋轉中心時,點
繞著點
旋轉180°得到
點,點
再繞著點
旋轉180°得到
點,這時點
與點
重合.
如圖2,當點、
為旋轉中心時,點
繞著點
旋轉180°得到
點,點
繞著點
旋轉180°得到
點,點
繞著點
旋轉180°得到
點,點
繞著點
旋轉180°得到
點,小明發現P、
兩點關于點
中心對稱.
(1)請在圖2中畫出點、
,
小明在證明P、
兩點關于點
中心對稱時,除了說明P、
、
三點共線之外,還需證明;
(2)如圖3,在平面直角坐標系xOy中,當、
、
為旋轉中心時,點
繞著點
旋轉180°得到
點;點
繞著點
旋轉180°得到
點;點
繞著點
旋轉180°得到
點;點
繞著點
旋轉180°得到點
. 繼續如此操作若干次得到點
,則點
的坐標為(),點
的坐為.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com