如圖,在平面直角坐標系中,直線AB與y軸、x軸分別交于點A、點B,與雙曲線交于點C(1,6)、D(3,n)兩點,
軸于點E,
軸于點F.
(1)填空:,
;
(2)求直線AB的解析式;
(3)求證:.
(1),
;(2)
;(3)先求得直線AB與坐標軸的交點坐標,由
可得
,再結合
,
即可證得
,從而可以證得結論.
解析試題分析:(1)先把(1,6)代入即可求得m的值,即可求得n的值;
(2)設直線AB的解析式為,由圖象過點(1,6)、D(3,2)即可根據待定系數法求解;
(3)先求得直線AB與坐標軸的交點坐標,由可得
,再結合
,
即可證得
,從而可以證得結論.
解:(1),
;
(2)設直線AB的解析式為:(
)
∵直線AB過點(1,6)、D(3,2)兩點
∴,解得
∴直線AB的解析式為;
(3)在直線中,令
,則
,令
,則
∴A(0,8),B(4,0)
∵,
∴
∵,
∴
∴.
考點:一次函數與反比例函數的交點問題
點評:一次函數與反比例函數的交點問題是初中數學的重點,是中考中比較常見的知識點,一般難度不大,需熟練掌握.
科目:初中數學 來源: 題型:解答題
定義:如圖,若雙曲線與它的其中一條對稱軸
相交于兩點A,B,則線段AB的長稱為雙曲線
的對徑.
(1)求雙曲線的對徑;
(2)若某雙曲線對徑是
.求k的值;
(3)仿照上述定義,請你定義雙曲線的對徑.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
已知:如圖,在平面直角坐標系xOy中,直線AB與x軸交于點A(﹣2,0),與反比例函數在第一象限內的圖象的交于點B(2,n),連接BO,若S△AOB=4.
(1)求該反比例函數的解析式和直線AB的解析式;
(2)若直線AB與y軸的交點為C,求△OCB的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
(2013年四川瀘州8分)如圖,已知函數與反比例函數
(x>0)的圖象交于點A.將
的圖象向下平移6個單位后與雙曲線
交于點B,與x軸交于點C.
(1)求點C的坐標;
(2)若,求反比例函數的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,直線y=k1x+b(k1≠0)與雙曲線(k2≠0)相交于A(1,m)、B(﹣2,﹣1)兩點.
(1)求直線和雙曲線的解析式.
(2)若A1(x1,y1),A2(x2,y2),A3(x3,y3)為雙曲線上的三點,且x1<x2<0<x3,請直接寫出y1,y2,y3的大小關系式.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,反比例函數的圖象與一次函數y=mx+b的圖象交于A(1,3),B(n,﹣1)兩點.
(1)求反比例函數與一次函數的解析式;
(2)根據圖象回答:當x取何值時,反比例函數的值大于一次函數的值.
(3)求△AOB的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:計算題
下圖是交警在某個路口統計的某時段來往車輛的車速情況.(單位:千米/時)
(1)車速的眾數是多少?
(2)計算這些車輛的平均數度;
(3)車速的中位數是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
要把一個正方體分割成8個小正方體,至少需要切3刀,因為這8個小正方體都只有三個面現成的,其它三個面必須用刀切3次才能切出來,那么,要把一個正方體分割成27個小正方體,至少需要要刀切 次,分割成64個小正方體,至少需要用刀切 次。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com