【題目】如圖,已知□ABCD的對角線AC、BD交于O,且∠1=∠2.
(1)求證:□ABCD是菱形;
(2)F為AD上一點,連結BF交AC于E,且AE=AF.求證:AO=(AF+AB).
【答案】(1)證明見解析;(2)證明見解析.
【解析】試題分析:(1)利用平行線的性質以及等角對等邊即可證得AB=BC,則依據菱形的定義即可判斷;
(2)首先證明△BCE是等腰三角形,然后依據平行四邊形的對角線互相平分即可證得.
試題解析:(1)∵ABCD中,AD∥BC,
∴∠2=∠ACB,
又∵∠1=∠2,
∴∠1=∠ACB
∴AB=BC,
∴ABCD是菱形;
(2)∵ABCD中,AD∥BC,
∴∠AFE=∠EBC,
又∵AF=AE,
∴∠AFE=∠AEF=∠BEC,
∴∠EBC=∠BEC,
∴BC=CE,
∴AC=AE+CE=AF+BC=2OA,
∴OA=(AF+BC),
又∵AB=BC,
∴OA=(AF+AB).
科目:初中數學 來源: 題型:
【題目】把拋物線y=2x2先向左平移3個單位,再向上平移4個單位,所得拋物線的函數表達式為( 。
A. y=2(x+3)2+4 B. y=2(x+3)2﹣4 C. y=2(x﹣3)2﹣4 D. y=2(x﹣3)2+4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,AB=CB,BO⊥AC,DA平分∠BAC,DE⊥AC,連接EF,下列結論:①tan∠ADB=2;②圖中有4對全等三角形;③若將△DEF沿EF折疊,則點D不一定落在AC上;④BD=BF;⑤S四邊形DFOE=S△AOF,上述結論中正確的個數是( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y1=a(x+2)2-3與y2=(x-3)2+1交于點A(1,3),過點A作x軸的平行線,分別交兩條拋物線于點B,C.則以下結論:
①無論x取何值,y2的值總是正數;
②a=1;
③當x=0時,y2-y1=4;
④2AB=3AC;
其中正確結論是( )
A.①② B.②③ C.③④ D.①④
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com