日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

如圖1,在△ABC中,點(diǎn)P為BC邊中點(diǎn),直線a繞頂點(diǎn)A旋轉(zhuǎn),若點(diǎn)B,P在直線a的異側(cè),BM⊥直線a于點(diǎn)M.CN⊥直線a于點(diǎn)N,連接PM,PN.
(1)延長(zhǎng)MP交CN于點(diǎn)E(如圖2).
①求證:△BPM≌△CPE;
②求證:PM=PN;
(2)若直線a繞點(diǎn)A旋轉(zhuǎn)到圖3的位置時(shí),點(diǎn)B,P在直線a的同側(cè),其它條件不變,此時(shí)PM=PN還成立嗎?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說(shuō)明理由;
(3)若直線a繞點(diǎn)A旋轉(zhuǎn)到與BC邊平行的位置時(shí),其它條件不變,請(qǐng)直接判斷四邊形MBCN的形狀及此時(shí)PM=PN還成立嗎?不必說(shuō)明理由.
精英家教網(wǎng)精英家教網(wǎng)
分析:(1)①根據(jù)平行線的性質(zhì)證得∠MBP=∠ECP再根據(jù)BP=CP,∠BPM=∠CPE即可得到;
②由△BPM≌△CPE,得到PM=PE則PM=
1
2
ME,而在Rt△MNE中,PN=
1
2
ME,即可得到PM=PN.
(2)證明方法與②相同.
(3)四邊形MBCN是矩形,則PM=PN成立.
解答:(1)證明:①如圖2:
∵BM⊥直線a于點(diǎn)M,CN⊥直線a于點(diǎn)N,精英家教網(wǎng)
∴∠BMA=∠CNM=90°,
∴BM∥CN,
∴∠MBP=∠ECP,
又∵P為BC邊中點(diǎn),
∴BP=CP,
又∵∠BPM=∠CPE,
∴△BPM≌△CPE,(3分)
②∵△BPM≌△CPE,
∴PM=PE∴PM=
1
2
ME,
∴在Rt△MNE中,PN=
1
2
ME,
∴PM=PN.(5分)

(2)解:成立,如圖3.
證明:延長(zhǎng)MP與NC的延長(zhǎng)線相交于點(diǎn)E,精英家教網(wǎng)
∵BM⊥直線a于點(diǎn)M,CN⊥直線a于點(diǎn)N,
∴∠BMN=∠CNM=90°∴∠BMN+∠CNM=180°,
∴BM∥CN∴∠MBP=∠ECP,(7分)
又∵P為BC中點(diǎn),
∴BP=CP,
又∵∠BPM=∠CPE,
在△BPM和△CPE中,
∠MBP=∠ECP
BP=CP
∠BPM=∠CPE

∴△BPM≌△CPE,
∴PM=PE,
∴PM=
1
2
ME,
則Rt△MNE中,PN=
1
2
ME,
∴PM=PN.(10分)
精英家教網(wǎng)
(3)解:如圖4,
四邊形M′BCN′是矩形,
根據(jù)矩形的性質(zhì)和P為BC邊中點(diǎn),得到△M′BP≌△N′CP,(11分)
得PM′=PN′成立.即“四邊形MBCN是矩形,則PM=PN成立”.(12分)
點(diǎn)評(píng):本題考查旋轉(zhuǎn)的性質(zhì).旋轉(zhuǎn)變化前后,對(duì)應(yīng)線段、對(duì)應(yīng)角分別相等,圖形的大小、形狀都不改變.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖1,在△ABC中,AB=AC,點(diǎn)D是邊BC的中點(diǎn).以BD為直徑作圓O,交邊AB于點(diǎn)P,連接PC,交AD于點(diǎn)E.
(1)求證:AD是圓O的切線;
(2)當(dāng)∠BAC=90°時(shí),求證:
PE
CE
=
1
2

(3)如圖2,當(dāng)PC是圓O的切線,E為AD中點(diǎn),BC=8,求AD的長(zhǎng).精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

我們給出如下定義:有一組相鄰內(nèi)角相等的四邊形叫做等鄰角四邊形.請(qǐng)解答下列問(wèn)題:
(1)寫出一個(gè)你所學(xué)過(guò)的特殊四邊形中是等鄰角四邊形的圖形的名稱;
(2)如圖1,在△ABC中,AB=AC,點(diǎn)D在BC上,且CD=CA,點(diǎn)E、F分別為BC、AD的中點(diǎn),連接EF并延長(zhǎng)交AB于點(diǎn)G.求證:四邊形AGEC是等鄰角四邊形;
(3)如圖2,若點(diǎn)D在△ABC的內(nèi)部,(2)中的其他條件不變,EF與CD交于點(diǎn)H,圖中是否存在等鄰角四邊形,若存在,指出是哪個(gè)四邊形,不必證明;若不存在,請(qǐng)說(shuō)精英家教網(wǎng)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)已知:如圖1,在四邊形ABCD中,BC⊥CD,∠ACD=∠ADC.求證:AB+AC>
BC2+CD2

(2)已知:如圖2,在△ABC中,AB上的高為CD,試判斷(AC+BC)2與AB2+4CD2之間的大小關(guān)系,并證明你的結(jié)論.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,AD和AE分別是△ABC的BC邊上的高和中線,點(diǎn)D是垂足,點(diǎn)E是BC的中點(diǎn),規(guī)定:λA=
DE
BD
.如圖2,在△ABC中,∠C=90°,∠A=30°,λC=
1
3
1
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,在△ABC中,∠BAC的平分線AD與∠BCA的平分線CE交于點(diǎn)O.
(1)求證:∠AOC=90°+
12
∠ABC;
(2)當(dāng)∠ABC=90°時(shí),且AO=3OD(如圖2),判斷線段AE,CD,AC之間的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案
主站蜘蛛池模板: 国产成人精品久久二区二区91 | 国产一区二区三区四区 | 四虎视频在线精品免费网址 | 亚洲精品在线观看免费 | 视频二区 | 欧美成人性生活视频 | 日韩欧美在线视频 | av黄色在线| 亚洲国产视频一区 | 一区二区免费视频观看 | 综合色婷婷一区二区亚洲欧美国产 | 欧美一区二区大片 | 日本日韩中文字幕 | 亚洲 欧美 日韩 在线 | 中文字幕在线观看2021 | 国产999精品久久久久久麻豆 | 亚洲午夜成激人情在线影院 | 日韩高清在线一区 | 成人激情视频在线观看 | 精品国模一区二区三区欧美 | 国产在线一区二区 | 韩国精品一区 | 亚洲www啪成人一区二区 | 国产在线观看一区 | 欧美激情在线播放 | www.日本视频 | 久草一区| 亚洲在线播放 | 一区二区三区四区免费观看 | 国产精品一区二区久久久 | 黄色影片网址 | 一本一道久久a久久精品蜜桃 | 日韩精品在线观看一区 | 亚洲电影一区二区 | 91精品入口蜜桃 | 亚洲成人精品av | 精品国产91久久久久久久 | 久久久免费电影 | 精品综合久久久 | 草草影院浮力 | 亚洲日日操 |