日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
已知:如圖1,BD、CE分別是△ABC的外角平分線,過點A作AF⊥BD,AG⊥CE,垂足分別為F、G,連接FG,延長AF、AG,與直線BC相交,易證FG=(AB+AC+BC).
若:(1)BD、CE分別是△ABC的內角平分線(如圖2);
(2)BD為△ABC的內角平分線,CE為△ABC的外角平分線(如圖3),
則在圖2、圖3兩種情況下,線段FG與△ABC三邊又有怎樣的數量關系?請寫出你的猜想,并對其中的一種情況給予證明.

【答案】分析:(1)都是內角平分線時,可根據等腰三角形三線合一的特點來求解,由于DB平分∠ABC,且AF⊥BD,如果延長AF交BC于K,那么三角形ABK就是個等腰三角形,AF=FK,如果延長AG到H,那么同理可證AG=GH,AC=CH,那么GF就是三角形AHK的中位線,GF就是HK的一半,而HK=BK-BH=BK-(BC-CH),由于BK=AB,CH=AC,那么可得出FG=(AB+AC-BC);
(2)證法同(1)先根據題目給出的求法,得出GD是AC的一半,然后按(2)的方法,通過延長AF來得出DF是(BC-AB)的一半,由此可得出FG=(BC+AC-AB).
解答:解:(1)猜想結果:如圖結論為FG=(AB+AC-BC)
證明:分別延長AG、AF交BC于H、K,
在△BAF和△BKF中,
,
∴△BAF≌△BKF(ASA),
∴AF=KF,AB=KB
同理可證,AG=HG,AC=HC
∴FG=HK
又∵HK=BK-BH=AB+AC-BC
∴FG=(AB+AC-BC)

(2)圖3的結論為FG=(BC+AC-AB).
證明:分別延長AG、AF交BC或延長線于H、K
在△BAF和△BKF中,

∴△BAF≌△BKF(ASA),
∴AF=KF,AB=KB
同理可證,AG=HG,AC=HC,
∴FG=KH
又∵KH=BC-BK+HC=BC+AC-AB.
∴FG=(BC+AC-AB).
點評:本題主要考查了直角三角形的性質,等腰三角形的性質,角平分線的性質以及全等三角形的判定等知識點.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網已知:如圖,AD=BD=CD=m,AB=n,BC=p,BC∥AD,m、n為有理數.
求證:p也有理數.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:如圖1,BD、CE分別是△ABC的外角平分線,過點A作AF⊥BD,AG⊥CE,垂足分別為F、G,連接FG,延長AF、AG,與直線BC相交,易證FG=
12
(AB+AC+BC).
若:(1)BD、CE分別是△ABC的內角平分線(如圖2);
(2)BD為△ABC的內角平分線,CE為△ABC的外角平分線(如圖3),
則在圖2、圖3兩種情況下,線段FG與△ABC三邊又有怎樣的數量關系?請寫出你的猜想,并對其中的一種情況給予證明.
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網已知:如圖,BA=BD,BC=BE,∠ABD=∠CBE.
求證:AC=DE.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:如圖,AB⊥BD,CD⊥BD,AD=BC.求證:
(1)AB=DC.
(2)AD∥BC.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:如圖,AC=BD,AD⊥AC,BC⊥BD.求證:AD=AC.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 青青草在线免费观看 | 黄色免费视频 | 一区二区免费 | 伊人久久国产 | k8久久久一区二区三区 | 国产美女啪啪 | www.色涩涩.com网站 | 一级一级国产片 | 九九热精品视频在线 | 国产精品888| 欧美成人高清视频 | 久久久国产精品免费 | 91精品国产欧美一区二区成人 | 欧美一区二区三区四区视频 | 日本激情视频在线播放 | 欧美日本一区二区三区 | 91网站免费| 久久99精品久久久久子伦 | 久热精品在线 | 久久精品一区视频 | 国产91久久久久 | 毛片视频观看 | 久久国产一区二区 | 欧美日韩天堂 | 日本电影黄色 | 99精品国产高清一区二区麻豆 | 国产精品福利网站 | 亚洲人人草| 欧美视频二区 | 午夜黄色一级片 | 亚洲精品成人无限看 | 福利亚洲 | 成人综合区 | 久草网站| 日本久久精品 | 久久国内精品 | 一级少妇视频 | 国产伦精品一区二区三区四区视频 | 欧美精品久久久久久久久老牛影院 | 国产精品久久久久无码av | 草久在线视频 |