日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

將兩塊斜邊長相等的等腰直角三角形按如圖擺放.
(1)如果把圖A中的△BCN繞點C逆時針旋轉(zhuǎn)90°,得到圖B中除了△ABC≌△CED、△BCN≌△ACF外,你還能找到一對全等的三角形嗎?寫出你的結(jié)論,并說明理由;
(2)將△CED繞點C旋轉(zhuǎn):
①當(dāng)點M、N在AB上(不與A、B重合)時,線段AM、MN、NB之間有一個不變的關(guān)系式,請你寫出這個關(guān)系式,并說明理由;
②當(dāng)點M在AB上,點N在AB的延長線上(如圖C)時,①中的關(guān)系式是否仍然成立?請說明理由.
作業(yè)寶

解:(1)△CMF≌△CMN.
理由∵△BCN繞點C逆時針旋轉(zhuǎn)90°得到△ACF,
∴CF=CN,∠ACF=∠BCN,
∵∠DCE=45°,
∴∠ACM+∠BCN=45°,
∴∠ACM+∠ACF=45°,
即∠MCF=45°,
∴∠MCF=∠MCN,
在△CMF和△CMN中,

∴△CMF≌△CMN(SAS);
(2)①∵△CMF≌△CMN,
∴FM=MN,
∵∠CAF=∠B=45°,
∴∠FAM=∠CAF+∠BAC=45°+45°=90°,
∴AM2+AF2=FM2
∴AM2+BN2=MN2
②如圖,把△BCN繞點C逆時針旋轉(zhuǎn)90°得到△ACF,
則AF=BN,CF=CN,∠BCN=∠ACF,
∵∠MCF=∠ACB-∠MCB-∠ACF=90°-(45°-∠BCN)-∠ACF=45°+∠BCN-∠ACF=45°,
∴∠MCF=∠MCN,
在△CMF和△CMN中,

∴△CMF≌△CMN(SAS),
∴FM=MN,
∵∠ABC=45°,
∴∠CAF=∠CBN=135°,
又∵∠BAC=45°,
∴∠FAM=∠CAF-∠BAC=135°-45°=90°,
∴AM2+AF2=FM2
∴AM2+BN2=MN2
分析:(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可得CF=CN,∠ACF=∠BCN,再求出∠ACM+∠BCN=45°,從而求出∠MCF=45°,然后利用“邊角邊”可以證明出△CMF和△CMN全等;
(2)①根據(jù)全等三角形對應(yīng)邊相等可得FM=MN,再根據(jù)旋轉(zhuǎn)的性質(zhì)可得AF=BN,∠CAF=∠B=45°,從而求出∠BAF=90°,再利用勾股定理列式即可得解;
②把△BCN繞點C逆時針旋轉(zhuǎn)90°得到△ACF,根據(jù)旋轉(zhuǎn)的性質(zhì)可得AF=BN,CF=CN,∠BCN=∠ACF,再求出∠MCF=∠MCN,然后利用“邊角邊”證明△CMF和△CMN全等,根據(jù)全等三角形對應(yīng)邊相等可得MF=MN,然后利用勾股定理列式即可得解.
點評:本題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的判定與性質(zhì),等腰直角三角形的性質(zhì),此類題目根據(jù)相同的思路確定出全等的三角形,然后找出條件是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

將兩塊斜邊長相等的等腰直角三角形按如圖A擺放,斜邊AB分別交CD、CE于M、N點,
(1)如果把圖A中的△BCN繞點C逆時針旋轉(zhuǎn)90°得到△ACF,連接FM,如圖B,求證:△CMF≌△CMN:
(2)將△CED繞點C旋轉(zhuǎn):
①當(dāng)點M、N在AB上(不與A、B重合)時,線段AM、MN、NB之間有一個不變的關(guān)系式,請你寫出這個關(guān)系式,并說明理由;
②當(dāng)點M在AB上,點N在AB的延長線上(如圖C)時,①中的關(guān)系式是否仍然成立?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

將兩塊斜邊長相等的等腰直角三角形按如圖擺放.
(1)如果把圖A中的△BCN繞點C逆時針旋轉(zhuǎn)90°,得到圖B中除了△ABC≌△CED、△BCN≌△ACF外,你還能找到一對全等的三角形嗎?寫出你的結(jié)論,并說明理由;
(2)將△CED繞點C旋轉(zhuǎn):
①當(dāng)點M、N在AB上(不與A、B重合)時,線段AM、MN、NB之間有一個不變的關(guān)系式,請你寫出這個關(guān)系式,并說明理由;
②當(dāng)點M在AB上,點N在AB的延長線上(如圖C)時,①中的關(guān)系式是否仍然成立?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

將兩塊斜邊長相等的等腰直角三角形按如圖A擺放,斜邊AB分別交CD、CE于M、N點,
(1)如果把圖A中的△BCN繞點C逆時針旋轉(zhuǎn)90°得到△ACF,連接FM,如圖B,求證:△CMF≌△CMN:
(2)將△CED繞點C旋轉(zhuǎn):
①當(dāng)點M、N在AB上(不與A、B重合)時,線段AM、MN、NB之間有一個不變的關(guān)系式,請你寫出這個關(guān)系式,并說明理由;
②當(dāng)點M在AB上,點N在AB的延長線上(如圖C)時,①中的關(guān)系式是否仍然成立?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 99精品全国免费观看视频软件 | 亚洲一区二区中文 | 国产精品乱码一区二区三区 | 久在线视频 | 国产成人在线视频 | 久久高清 | 久久婷婷色 | 青青久草在线 | 一本色道精品久久一区二区三区 | 色综合色综合 | 国产精品美女久久久久久久久久久 | 日韩精品999 | 精品国产高清一区二区三区 | 国产精品成人一区二区网站软件 | 国产高清精品一区二区三区 | 日韩在线www | 亚洲视频免费 | 看真人视频a级毛片 | 国产精品视频一区二区三区 | 欧美精品一区二区在线观看 | 久久久久久久免费 | 欧洲亚洲精品久久久久 | 日韩中文字幕网 | 亚洲精品影院 | 欧美高清一区二区 | 91精品久久久久久久 | 国产一区二区三区精品久久久 | 日韩视频在线观看一区 | 欧美一区二区视频 | 欧美日韩精品区 | 国产成人精品在线观看 | 国产精品久久av | 国产精品视频一区二区三区不卡 | 亚洲一区二区三区四区在线观看 | 成人在线小视频 | 亚洲欧美在线播放 | 天天干国产| 黄桃av | 黄色香蕉网站 | 日韩av一区二区三区在线 | av国产精品 |