【題目】已知:⊙O是△ABC的外接圓,∠OAB=40°,則∠ACB的大小為( )
A.20°
B.50°
C.20°或160°
D.50°或130°
【答案】D
【解析】解:
∵OA=OB,
∴∠OBA=∠OAB=40°,
∴∠AOB=180°﹣∠OAB﹣∠OBA=100°,
∴∠ACB= ∠AOB=50°.
當點C在點C′的位置時,∠AC′B=180°﹣50°=130°.
所以答案是:D.
【考點精析】本題主要考查了圓周角定理和圓內接四邊形的性質的相關知識點,需要掌握頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半;把圓分成n(n≥3):1、依次連結各分點所得的多邊形是這個圓的內接正n邊形2、經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】某水果店計劃進A,B兩種水果共140千克,這兩種水果的進價和售價如表所示
進價 | 售價 | |
A種水果 | 5 | 8 |
B種水果 | 9 | 13 |
若該水果店購進這兩種水果共花費1020元,求該水果店分別購進A,B兩種水果各多少千克?
在
的基礎上,為了迎接春節的來臨,水果店老板決定把A種水果全部八折出售,B種水果全部降價
出售,那么售完后共獲利多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】工廠工人小李生產A、B兩種產品.若生產A產品10件,生產B產品10件,共需時間350分鐘;若生產A產品30件,生產B產品20件,共需時間850分鐘.
(1)小李每生產一件種產品和每生產一件
種產品分別需要多少分鐘;
(2)小李每天工作8個小時,每月工作25天.如果小李四月份生產種產品
件(
為正整數).
①用含的代數式直接表示小李四月份生產
種產品的件數;
②已知每生產一件產品可得1.40元,每生產一件
種產品可得2.80元,若小李四月份的工資不少于1500元,求
的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知∠1=∠2,∠5=∠6,∠3=∠4,試說明AE∥BD,AD∥BC.請完成下列證明過程.
證明:
∵∠5=∠6,
∴AB∥CE( ),
∴∠3=__________
∵∠3=∠4,
∴∠4=∠BDC( ),
∴ ∥BD( ),
∴∠2= ( )
∵∠1=∠2,
∴∠1=______,
∴AD∥BC
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】市場上的紅茶由茶原液與純凈水按一定比例配制而成,其中購買一噸茶原液的錢可以買15 噸純凈水。由于今年以來茶產地連續大旱,茶原液收購價上漲50%.純凈水價也上漲了10%,導致配制的這種茶飲料成本上漲40%,問這種茶飲料中茶原液與純凈水的配制比例為_______ .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知線段a和射線OA,射線OA上有點B.
(1)用圓規和直尺在射線OA上作線段CD,使點B為CD的中點,點C在點B的左邊,且BC=a.(不用寫作法,保留作圖痕跡)
(2)在(1)的基礎上,若OB=12cm,OC=5cm,求線段OD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一場2015亞洲杯賽B組第二輪比賽中,中國隊憑借吳曦和孫可在下半場的兩個進球,提前一輪小組出線。如圖,足球場上守門員在 處開出一高球,球從離地面1米的
處飛出(
在
軸上),運動員孫可在距
點6米的
處發現球在自己頭的正上方達到最高點
,距地面約4米高,球落地后又一次彈起.據實驗測算,足球在草坪上彈起后的拋物線與原來的拋物線形狀相同,最大高度減少到原來最大高度的一半.
(1)求足球開始飛出到第一次落地時,該拋物線的函數表達式.
(2)足球第一次落地點 距守門員多少米?(取
)
(3)孫可要搶到足球第二個落地點 ,他應從第一次落地點
再向前跑多少米?(取
)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com