日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情

【解題思路】如圖:延長MA交CB于點E. CD=DN+CN=DN+ME.

中,背水坡AB的坡比可知

。又AB=20 m,所以AE= ×20=10m,BE=20×= m

所以NC=ME=MA=AE=1.7+10=11.7m

中,∠AMN=30°,MN=CE=CB+BE=(30+)m

DN=

所以旗桿高度CD=DN+CN=DN+ME=11.7+= ≈36.0m

【答案】 ≈36.0

在圓內接四邊形ABCD中,CD為∠BCA外角的平分線,F為弧AD上一點,BC=AF,延長DF與BA的延長線交于E.

⑴求證△ABD為等腰三角形.

⑵求證AC•AF=DF•FE

【解題思路】(1)利用同角的補角相等,同弧所對的圓周角相等,等量代換;

(2)證等積式就要找三角形相似,發現AC、AF、FE所在的三角形,且利用等弧對等弦,同圓中等弦對等弧,發現DF可以被DC替換,進而求解。

【答案】⑴由圓的性質知∠MCD=∠DAB、∠DCA=∠DBA,而∠MCD=∠DCA,所以∠DBA=∠DAB,故△ABD為等腰三角形.

⑵∵∠DBA=∠DAB

∴弧AD=弧BD

又∵BC=AF

∴弧BC=弧AF、∠CDB=∠FDA

∴弧CD=弧DF

∴CD=DF

再由“圓的內接四邊形外角等于它的內對角”知

∠AFE=∠DBA=∠DCA①,∠FAE=∠BDE

∴∠CDA=∠CDB+∠BDA=∠FDA+∠BDA=∠BDE=∠FAE②   由①②得△DCA∽△FAE

∴AC:FE=CD:AF

∴AC•AF= CD •FE

而CD=DF,

∴AC•AF=DF•FE

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:閱讀理解

閱讀理解題:
【幾何模型】
條件:如圖1,A、B是直線l同旁的兩個定點.
問題:在直線l上確定一點P,使PA+PB的值最小.
方法:作點A關于直線l的對稱點A′,連接A′B交l于點P,則PA+PB=A′P+PB=A′B,
由“兩點之間,線段最短”可知,點P即為所求的點.

【模型應用】
如圖2所示,兩個村子A、B在一條河CD的同側,A、B兩村到河邊的距離分別為AC=1千米,BD=3千米,CD=3千米.現要在河邊CD上建造一水廠,向A、B兩村送水,鋪設水管的工程費用為每千米15000元,請你在CD上選擇水廠位置,使鋪設水管的費用最省,并求出最省的鋪設水管的費用W.

查看答案和解析>>

科目:初中數學 來源: 題型:

【問題】如圖甲,在等邊三角形ABC內有一點P,且PA=2,PB=
3
,PC=1,求∠BPC度數的大小和等邊三角形ABC的邊長.
【探究】解題思路是:將△BPC繞點B逆時針旋轉60°,如圖乙所示,連接PP′.
(1)△P′PB是
 
三角形,△PP′A是
 
三角形,∠BPC=
 
°;
(2)利用△BPC可以求出△ABC的邊長為
 

【拓展應用】
如圖丙,在正方形ABCD內有一點P,且PA=
5
,BP=
2
,PC=1;
(3)求∠BPC度數的大小;
(4)求正方形ABCD的邊長.
精英家教網

查看答案和解析>>

科目:初中數學 來源:2013屆江蘇省南京市鼓樓區中考二模數學試卷(帶解析) 題型:解答題

【提出問題】
如圖①,在梯形ABCD中,AD//BC,AC、BD交于點E,∠BEC=n°,若AD=a,BC=b,則梯形ABCD的面積最大是多少?
【探究過程】
小明提出:可以從特殊情況開始探究,如圖②,在梯形ABCD中,AD//BC,AC⊥BD,若AD=3,BC=7,則梯形ABCD的面積最大是多少?
如圖③,過點D做DE//AC交BC的延長線于點E,那么梯形ABCD的面積就等于△DBE的面積,求梯形ABCD的面積最大值就是求△DBE的面積最大值.如果設AC=x,BD=y,那么S△DBE=xy.
以下是幾位同學的對話:
A同學:因為y=,所以S△DBE=x,求這個函數的最大值即可.
B同學:我們知道x2+y2=100,借助完全平方公式可求S△DBE=xy的最大值
C同學:△DBE是直角三角形,底BE=10,只要高最大,S△DBE就最大,我們先將所有滿足BE=10的直角△DBE都找出來,然后在其中尋找高最大的△DBE即可.

(1)請選擇A同學或者B同學的方法,完成解題過程.
(2)請幫C同學在圖③中畫出所有滿足條件的點D,并標出使△DBE面積最大的點D1.(保留作圖痕跡,可適當說明畫圖過程)
【解決問題】
根據對特殊情況的探究經驗,請在圖①中畫出面積最大的梯形ABCD的頂點D1,并直接寫出梯形ABCD面積的最大值.

查看答案和解析>>

科目:初中數學 來源:2012-2013學年江蘇省南京市鼓樓區中考二模數學試卷(解析版) 題型:解答題

【提出問題】

如圖①,在梯形ABCD中,AD//BC,AC、BD交于點E,∠BEC=n°,若AD=a,BC=b,則梯形ABCD的面積最大是多少?

【探究過程】

小明提出:可以從特殊情況開始探究,如圖②,在梯形ABCD中,AD//BC,AC⊥BD,若AD=3,BC=7,則梯形ABCD的面積最大是多少?

如圖③,過點D做DE//AC交BC的延長線于點E,那么梯形ABCD的面積就等于△DBE的面積,求梯形ABCD的面積最大值就是求△DBE的面積最大值.如果設AC=x,BD=y,那么S△DBE=xy.

以下是幾位同學的對話:

A同學:因為y=,所以S△DBE=x,求這個函數的最大值即可.

B同學:我們知道x2+y2=100,借助完全平方公式可求S△DBE=xy的最大值

C同學:△DBE是直角三角形,底BE=10,只要高最大,S△DBE就最大,我們先將所有滿足BE=10的直角△DBE都找出來,然后在其中尋找高最大的△DBE即可.

(1)請選擇A同學或者B同學的方法,完成解題過程.

(2)請幫C同學在圖③中畫出所有滿足條件的點D,并標出使△DBE面積最大的點D1.(保留作圖痕跡,可適當說明畫圖過程)

【解決問題】

根據對特殊情況的探究經驗,請在圖①中畫出面積最大的梯形ABCD的頂點D1,并直接寫出梯形ABCD面積的最大值.

 

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日韩久久一区二区 | 97视频在线免费观看 | 精品亚洲永久免费精品 | 久久久精品一区二区三区 | 久久久久久久国产精品 | 国产专区在线视频 | 日韩综合在线 | 国产精品免费观看 | 国产精品理论视频 | 久久综合九色综合欧美狠狠 | 黄色国产大片 | 国产美女高潮一区二区三区 | 久久久激情视频 | 日精品| 欧美高清不卡 | 国产精品高清在线 | 宅宅久久| 精品成人佐山爱一区二区 | 欧美日韩国产高清视频 | 蜜臀av在线播放一区二区三区 | 免费观看亚洲 | 97国产一区二区 | 成人a网 | 久久成人18免费网站 | 玖玖视频 | 国产一级一级片 | 欧美乱码精品一区二区三 | 日韩一区二区三区在线播放 | 日韩美女爱爱 | 久久精品一区二区三区不卡牛牛 | 国产伦精品一区二区三区照片91 | www.91av在线 | 美女久久久久久久久久久 | 亚洲骚片| 色站综合| 看全黄大色黄大片老人做 | 色偷偷噜噜噜亚洲男人 | 成人性生交大片免费看中文带字幕 | 一区二区三区四区精品 | 国产区视频 | 九九热精品视频在线观看 |