日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
【問題引入】
幾個人拎著水桶在一個水龍頭前面排隊打水,水桶有大有小.他們該怎樣排隊才能使得總的排隊時間最短?
假設只有兩個人時,設大桶接滿水需要T分鐘,小桶接滿水需要t分鐘(顯然T>t),若拎著大桶者在拎著小桶者之前,則拎大桶者可直接接水,只需等候T分鐘,拎小桶者一共等候了(T+t)分鐘,兩人一共等候了(2T+t)分鐘;反之,若拎小桶者在拎大桶者前面,容易求出出兩人接滿水等候(T+2t)分鐘.可見,要使總的排隊時間最短,拎小桶者應排在拎大桶者前面.這樣,我們可以猜測,幾個人拎著水桶在一個水龍頭前面排隊打水,要使總的排隊時間最短,需將他們按水桶從小到大排隊.
規律總結:
事實上,只要不按從小到大的順序排隊,就至少有緊挨著的兩個人拎著大桶者排在拎小桶者之前,仍設大桶接滿水需要T分鐘,小桶接滿水需要t分鐘,并設拎大桶者開始接水時已等候了m分鐘,這樣拎大桶者接滿水一共等候了(m+T)分鐘,拎小桶者一共等候了(m+T+t)分鐘,兩人一共等候了(2m+2T+t)分鐘,在其他人位置不變的前提下,讓這兩個人交還位置,即局部調整這兩個人的位置,同樣介意計算兩個人接滿水共等候了______分鐘,共節省了______分鐘,而其他人等候的時間未變,這說明只要存在有緊挨著的兩個人是拎大桶者在拎小桶者之前都可以這樣調整,從而使得總等候時間減少.這樣經過一系列調整后,整個隊伍都是從小打到排列,就打到最優狀態,總的排隊時間就最短.
【方法探究】
一般的,對某些設計多個可變對象的數學問題,先對其少數對象進行調整,其他對象暫時保持不變,從而化難為易,取得問題的局部解決.經過若干次這種局部的調整,不斷縮小范圍,逐步逼近目標,最終使問題得到解決,這種數學思想就叫做局部調整法.
【實踐應用1】
如圖1在銳角△ABC中,AB=,∠BAC=45°,∠BAC的平分線交BC于點D,M、N分別是AD和AB上的動點,則BM+MN的最小值是多少?
解析:
(1)先假定N為定點,調整M到合適的位置使BM+MN有最小值(相對的),容易想到,在AC上作AN′=AN(即作點N關于AD的對稱點N'),連接BN′交AD于M,則M點是使BM+MN有相對最小值的點.(如圖2,M點是確定方法找到的)
(2)在考慮點N的位置,使BM+MN最終達到最小值.可以理解,BM+MN=BM+MN′,所以要使BM+MN′有最小值,只需使______,此時BM+MN的最小值是______.
【實踐應用2】
如圖3,把邊長是3的正方形等分成9個小正方形,在有陰影的小正方形內(包括邊界)分別取點P、R,于已知格點Q(每個小正方形的頂點叫做格點)構成三角形,則△PQR的最大面積是______,請在圖4中畫出面積最大時的△PQR的圖形.

【答案】分析:【問題引入】表示出拎小桶者先接水時等候的時間,然后加上拎大桶者一共等候者用的時間,用(2m+2T+t)減去二者的和就是節省的時間;
【實踐應用1】
從已知條件結合圖形認真思考,通過構造全等三角形,利用三角形的三邊的關系確定線段和的最小值;
【實踐應用2】
利用局部調整法即可確定當P在A點,R在G點時,三角形的面積最大,即可求得面積的最大值.
解答:解:【問題引入】設拎大桶者開始接水時已等候了m分鐘,這樣拎小桶者接滿水一共等候了(m+t)分鐘,拎大桶者一共等候了(m+T+t)分鐘,兩人一共等候了(2m+2t+T)分鐘,共節省了(2m+2T+t)-(2m+2t+T)=T-t分鐘.
故答案是:2m+2t+T;
【實踐應用1】
(2)解:如圖,在AC上截取AE=AN,連接BE.
∵∠BAC的平分線交BC于點D,
∴∠EAM=∠NAM,
在△AME與△AMN中,

∴△AME≌△AMN(SAS),
∴ME=MN.
∴BM+MN=BM+ME≥BE.
∵BM+MN有最小值.
當BE是點B到直線AC的距離時,BE⊥AC,
又AB=4,∠BAC=45°,此時,△ABE為等腰直角三角形,
∴BE=4,
即BE取最小值為4,
∴BM+MN的最小值是4.
故答案是:BM+MN′=BN′,4;
【實踐應用2】
解:當P在A的位置時,R在線段GF上時,△PQR的面積最大,最大面積是:
S△PQR===2.
同理當R在G點時,P在AB上時,△PQR的面積最大,最大值是2.
∴△PQR的最大面積是2
故答案為2.
點評:本題考查了三角形全等的判定與性質,以及數學中的局部調整思想,正確確定當P在A點,R在G點時,三角形的面積最大是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:閱讀理解

(2012•李滄區一模)【問題引入】
幾個人拎著水桶在一個水龍頭前面排隊打水,水桶有大有小.他們該怎樣排隊才能使得總的排隊時間最短?
假設只有兩個人時,設大桶接滿水需要T分鐘,小桶接滿水需要t分鐘(顯然T>t),若拎著大桶者在拎著小桶者之前,則拎大桶者可直接接水,只需等候T分鐘,拎小桶者一共等候了(T+t)分鐘,兩人一共等候了(2T+t)分鐘;反之,若拎小桶者在拎大桶者前面,容易求出出兩人接滿水等候(T+2t)分鐘.可見,要使總的排隊時間最短,拎小桶者應排在拎大桶者前面.這樣,我們可以猜測,幾個人拎著水桶在一個水龍頭前面排隊打水,要使總的排隊時間最短,需將他們按水桶從小到大排隊.
規律總結:
事實上,只要不按從小到大的順序排隊,就至少有緊挨著的兩個人拎著大桶者排在拎小桶者之前,仍設大桶接滿水需要T分鐘,小桶接滿水需要t分鐘,并設拎大桶者開始接水時已等候了m分鐘,這樣拎大桶者接滿水一共等候了(m+T)分鐘,拎小桶者一共等候了(m+T+t)分鐘,兩人一共等候了(2m+2T+t)分鐘,在其他人位置不變的前提下,讓這兩個人交還位置,即局部調整這兩個人的位置,同樣介意計算兩個人接滿水共等候了
2m+2t+T
2m+2t+T
分鐘,共節省了
T-t
T-t
分鐘,而其他人等候的時間未變,這說明只要存在有緊挨著的兩個人是拎大桶者在拎小桶者之前都可以這樣調整,從而使得總等候時間減少.這樣經過一系列調整后,整個隊伍都是從小打到排列,就打到最優狀態,總的排隊時間就最短.
【方法探究】
一般的,對某些設計多個可變對象的數學問題,先對其少數對象進行調整,其他對象暫時保持不變,從而化難為易,取得問題的局部解決.經過若干次這種局部的調整,不斷縮小范圍,逐步逼近目標,最終使問題得到解決,這種數學思想就叫做局部調整法.
【實踐應用1】
如圖1在銳角△ABC中,AB=4
2
,∠BAC=45°,∠BAC的平分線交BC于點D,M、N分別是AD和AB上的動點,則BM+MN的最小值是多少?
解析:
(1)先假定N為定點,調整M到合適的位置使BM+MN有最小值(相對的),容易想到,在AC上作AN′=AN(即作點N關于AD的對稱點N'),連接BN′交AD于M,則M點是使BM+MN有相對最小值的點.(如圖2,M點是確定方法找到的)
(2)在考慮點N的位置,使BM+MN最終達到最小值.可以理解,BM+MN=BM+MN′,所以要使BM+MN′有最小值,只需使
BM+MN′=BN′
BM+MN′=BN′
,此時BM+MN的最小值是
4
4

【實踐應用2】
如圖3,把邊長是3的正方形等分成9個小正方形,在有陰影的小正方形內(包括邊界)分別取點P、R,于已知格點Q(每個小正方形的頂點叫做格點)構成三角形,則△PQR的最大面積是
2
2
,請在圖4中畫出面積最大時的△PQR的圖形.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产一区在线视频 | 欧美国产日韩视频 | 最新黄色网址在线播放 | 亚洲一区av| 在线日本视频 | 99亚洲精品 | 免费福利片2019潦草影视午夜 | 午夜精品在线观看 | 欧美成人a∨高清免费观看 久久精品在线 | 中文字幕在线观看av | 羞羞视频网页 | av网站久久 | 精品日韩一区二区 | 毛片大全| 亚洲一区二区三区四区五区中文 | 日本在线观看视频网站 | 久久狠狠| 欧美日韩在线第一页 | 日韩一区二区精品 | 久久女人 | 成人在线片 | 得得啪在线视频 | 一级黄色片子免费看 | 国产日韩欧美精品一区 | sis色中色 | 日本在线一区二区三区 | 国产精品大全 | 美日韩在线观看 | 谁有毛片 | 久久免费精品视频 | 日韩视频免费观看 | 国产亚洲网站 | 91精品国产aⅴ | 日日摸天天做天天添天天欢 | 欧美日韩国产高清 | 欧美成人精品一区 | 日韩精品专区 | av中文字幕在线播放 | 日韩精品1区2区3区 欧美高清不卡 | 国产视频福利在线 | 免费黄色毛片视频 |