【題目】某區(qū)對即將參加中考的5000名初中畢業(yè)生進行了一次視力抽樣調(diào)查,繪制出頻數(shù)分布表和不完整的頻數(shù)分布直方圖,請根據(jù)圖表信息回答下列問題:
初中畢業(yè)生視力抽樣調(diào)查頻數(shù)分布表
視力 | 頻數(shù)(人) | 頻率 |
4.0≤x<4.3 | 20 | 0.1 |
4.3≤x<4.6 | 40 | 0.2 |
4.6≤x<4.9 | 70 | 0.35 |
4.9≤x<5.2 | a | 0.3 |
5.2≤x<5.5 | 10 | b |
(1)本次調(diào)查的樣本容量為 ;
(2)在頻數(shù)分布表中,a= ,b= ,并將頻數(shù)分布直方圖補充完整;
(3)若視力在4.6以上(含4.6)均屬正常,根據(jù)上述信息估計全區(qū)初中畢業(yè)生中視力正常的學(xué)生有多少人?
【答案】(1)200;(2)60,0.05,補圖見解析;(3)估計全區(qū)初中畢業(yè)生中視力正常的學(xué)生有3500人.
【解析】
(1)根據(jù)視力在4.0≤x<4.3范圍內(nèi)的頻數(shù)除以頻率即可求得樣本容量;
(2)根據(jù)樣本容量,根據(jù)其對應(yīng)的已知頻率或頻數(shù)即可求得a,b的值;
(3)求出樣本中視力正常所占百分比乘以5000即可得解.
(1)根據(jù)題意得:20÷0.1=200,即本次調(diào)查的樣本容量為200,
故答案為:200;
(2)a=200×0.3=60,b=10÷200=0.05,
補全頻數(shù)分布圖,如圖所示,
故答案為:60,0.05;
(3)根據(jù)題意得:5000×=3500(人),
則全區(qū)初中畢業(yè)生中視力正常的學(xué)生有估計有3500人.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】規(guī)定:身高在選定標準的±2%范圍之內(nèi)都稱為“普通身高”.為了解某校九年級男生中具有“普通身高”的人數(shù),我們從該校九年級500名男生中隨機選出10名男生,分別測量出他們的身高(單位:cm)收集并整理統(tǒng)計表:
男生序號 | ① | ② | ③ | ④ | ⑤ | ⑥ | ⑦ | ⑧ | ⑨ | ⑩ |
身高 | 163 | 171 | 173 | 159 | 161 | 174 | 164 | 166 | 169 | 164 |
根據(jù)以上表格信息,解答如下問題:
(1)計算這組數(shù)據(jù)的三個統(tǒng)計量:平均數(shù)、中位數(shù)、眾數(shù);
(2)請你選擇其中一個統(tǒng)計量作為選定標準,估計該校九年級男生中具有“普通身高”的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠A=90°,AB=AC,點D,E分別在邊AB,AC上,AD=AE,連接DC,點M,P,N分別為DE,DC,BC的中點.
(1)觀察猜想
圖1中,線段PM與PN的數(shù)量關(guān)系是 ,位置關(guān)系是 ;
(2)探究證明
把△ADE繞點A逆時針方向旋轉(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說明理由;
(3)拓展延伸
把△ADE繞點A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請直接寫出△PMN面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,CD為⊙O的直徑,AD,AB,EC分別與⊙O相切于點D,E,C(AD<BC),連接DE并延長與與直線BC相交于點P,連接OB.
(1)求證:BC=BP;
(2)若DEOB=40,求ADBC的值;
(3)在(2)條件下,若S△ADE:S△PBE=16:25,求S△ADE和S△PBE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知 AD//BC, 點 E 為 CD 上一點,AE、BE 分別平分∠DAB、∠CBA,BE交 AD 的延長線于點 F.求證:(1)△ABE≌△AEF;(2) AD+BC=AB
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,C是AB上一點,點D,E分別在AB兩側(cè),AD∥BE,且AD=BC,BE=AC.
(1)求證:CD=CE;
(2)連接DE,交AB于點F,猜想△BEF的形狀,并給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形OABC中,OA=5,AB=4,點D為邊AB上一點,將△BCD沿直線CD折疊,使點B恰好落在OA邊上的點E處,分別以O(shè)C,OA所在的直線為x軸,y軸建立平面直角坐標系.
(1)求點E坐標及經(jīng)過O,D,C三點的拋物線的解析式;
(2)一動點P從點C出發(fā),沿CB以每秒2個單位長的速度向點B運動,同時動點Q從E點出發(fā),沿EC以每秒1個單位長的速度向點C運動,當點P到達點B時,兩點同時停止運動.設(shè)運動時間為t秒,當t為何值時,DP=DQ;
(3)若點N在(2)中的拋物線的對稱軸上,點M在拋物線上,是否存在這樣的點M與點N,使得以M,N,C,E為頂點的四邊形是平行四邊形?若存在,請求出M點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示, △ABC是直角三角形,∠A=90°,D是斜邊BC的中點,E,F分別是AB,AC邊上的動點,且DE⊥DF.
(1)如圖(1),連接AD,若AB=AC=17,CF=5,求線段EF的長.
(2)如圖(2),若AB≠AC,寫出線段EF與線段BE,CF之間的等量關(guān)系,并寫出證明過程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com