
如圖,在平面直角坐標系中,函數y=x的圖象l是第一、三象限的角平分線.
(1)實驗與探究:由圖觀察易知A(0,2)關于直線l的對稱點A′的坐標為(2,0),請在圖中分別標明B(5,3)、C(-2,5)關于直線l的對稱點B′、C′的位置,并寫出它們的坐標:B′
(3,5)
(3,5)
、C′
(5,-2)
(5,-2)
;
(2)歸納與發現:結合圖形觀察以上三組點的坐標,你會發現:坐標平面內任一點P(m,n)關于第一、三象限的角平分線l的對稱點P′的坐標為
(n,m)
(n,m)
;
(3)類比與猜想:坐標平面內任一點P(m,n)關于第二、四象限的角平分線的對稱點P′的坐標為
(-n,-m)
(-n,-m)
;
(4)運用與拓廣:已知兩點D(0,-3)、E(-1,-4),試在第一、三象限的角平分線l上確定一點Q,使點Q到D、E兩點的距離之和最小,并求出Q點坐標.