【題目】如圖,四邊形ABCD內接于⊙O,F是 上一點,且
=
,連接CF并延長交AD的延長線于點E,連接AC,若∠ABC=105°,∠BAC=25°,則∠E的度數為( )
A.45°
B.50°
C.55°
D.60°
【答案】B
【解析】解:∵四邊形ABCD內接于⊙O,∠ABC=105°, ∴∠ADC=180°﹣∠ABC=180°﹣105°=75°.
∵ =
,∠BAC=25°,
∴∠DCE=∠BAC=25°,
∴∠E=∠ADC﹣∠DCE=75°﹣25°=50°.
故選B.
【考點精析】認真審題,首先需要了解圓心角、弧、弦的關系(在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等;在同圓或等圓中,同弧等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半),還要掌握圓內接四邊形的性質(把圓分成n(n≥3):1、依次連結各分點所得的多邊形是這個圓的內接正n邊形2、經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形)的相關知識才是答題的關鍵.
科目:初中數學 來源: 題型:
【題目】校園廣播主持人培訓班開展比賽活動,分為 A、B、C、D四個等級,對應的成績分別是9分、8分、7分、6分,根據如圖不完整的統計圖解答下列問題:
(1)補全下面兩個統計圖(不寫過程);
(2)求該班學生比賽的平均成績;
(3)現準備從等級A的4人(兩男兩女)中隨機抽取兩名主持人,請利用列表或畫樹狀圖的方法,求恰好抽到一男一女學生的概率?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在邊長為2的正三角形ABC中,E、F、G分別為AB、AC、BC的中點,點P為線段EF上一個動點,連接BP、GP,則△BPG的周長的最小值是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】矩形、菱形、正方形都是平行四邊形,但它們都是有特殊條件的平行四邊形,正方形不僅是特殊的矩形,也是特殊的菱形.因此,我們可利用矩形、菱形的性質來研究正方形的有關問題.回答下列問題:
(1)將平行四邊形、矩形、菱形、正方形填入它們的包含關系的下圖中.
(2)要證明一個四邊形是正方形,可先證明四邊形是矩形,再證明這個矩形的相等;或者先證明四邊形是菱形,在證明這個菱形有一個角是 .
(3)某同學根據菱形面積計算公式推導出對角線長為a的正方形面積是S=0.5a2 , 對此結論,你認為是否正確?若正確,請說明理由;若不正確,請舉出一個反例說明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,O為AC中點,EF過點O且EF⊥AC分別交DC于點F,交AB于點E,點G是AE中點且∠AOG=30°,給出以下結論: ①∠AFC=120°;
②△AEF是等邊三角形;
③AC=3OG;
④S△AOG= S△ABC
其中正確的是 . (把所有正確結論的序號都選上)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在大樓AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小紅在斜坡下的點C處測得樓頂B的仰角為60°,在斜坡上的點D處測得樓頂B的仰角為45°,其中點A、C、E在同一直線上.
(1)求斜坡CD的高度DE;
(2)求大樓AB的高度(結果保留根號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知直角梯形OABC的邊OA在y軸的正半軸上,OC在x軸的正半軸上,OA=AB=2,OC=3,過點B作BD⊥BC,交OA于點D.將∠DBC繞點B按順時針方向旋轉,角的兩邊分別交y軸的正半軸、x軸的正半軸于E和F.
(1)求經過A、B、C三點的拋物線的解析式;
(2)當BE經過(1)中拋物線的頂點時,求CF的長;
(3)連接EF,設△BEF與△BFC的面積之差為S,問:當CF為何值時S最小,并求出這個最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在8×8的正方形網格中,有一個Rt△AOB,點O是直角頂點,點O、A、B分別在網格中小正方形的頂點上,請按照下面要求在所給的網格中畫圖.
(1)在圖1中,將△AOB先向右平移3個單位,再向上平移2個單位,得到△A1O1B1 , 畫出平移后的△A1O1B1;(其中點A、O、B的對應點分別為點A1 , O1 , B1)
(2)在圖2中,△AOB與△A2O2B2是關于點P對稱的圖形,畫出△A2O2B2 , 連接BA2 , 并直接寫出tan∠A2BO的值.(其中A,O,B的對應點分別為點A2 , O2 , B2)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com