日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情

【題目】如圖,有理數 abc 分別對應數軸上的點 A,B,C,a 2|b 4| 0 ,關于 xy 的單項式3(c 3)x y yx 是同類項. 我們把數軸上兩點之間的距離用表示兩點的大寫字母一起標記,例如,點 A 與點 B 間的距離記作 AB.

(1) abc 的值;

(2) P C 點出發以每秒 1 個單位長度在數軸上按以下規律往返運動:第一回合,從點 C 到點 B 到點 A 回到點 C;第二回合,從點 C BC 的中點 D CA 的中點 D1 回到點 C;第三回合,從點 C CD 的中點 D2 CD1 的中點 D3 回到點 C……,如此循環下去,若第 t 秒時滿足 PB+2PC=AC+1,求 t 的最大值;

(3)在(2)的條件下,P 點第一次從 C 點出發的同時,數軸上的動點 MN 分別從 A 點和 B 點向右運動,速度分別為每秒 1 個單位長度和每秒 2 個單位長度,P 點完成第一個回合后停止在 C 點,當 MP=2MN 時, t 的值是 (直接填答案)

【答案】1a=2b=4c=1;(2)最大值為秒;(3.

【解析】

1)根據絕對值和偶次冪的非負性可以求出ab,再根據同類項的定義求c即可.

2)首先根據第一回合計算出滿足PB+2PC=AC+1時的t值,從而得到要滿足PB+2PC=AC+1的點P所對應的數,進而分析第幾回合到達不了這個數,從而求最大值;

3)分析N追上Mt的值,據此進行分類討論.

1)∵3(c 3)x y yx 是同類項

a2=0b+4=0|c+2|=1c+3≠0

a=2b=4c=1.

2)由(1)知,點A對應的數為2,點B對應的數為-4,點C對應的數為-1,則AC=3

第一回合:當點PCB時,CP=tBP=3t

PB+2PC=AC+1

3t+2t=4,則t=1,此時點P對應的數為-2

當點PCA時,CP=t6BP=3+t6=t3

PB+2PC=AC+1

t3+2(t6)=4,則t=,此時點P對應的數為

通過計算可得,D4對應的數為D5對應的數為D6對應的數為>2D7對應的數為<,所以t的最大值在第三回合點PD5回到點C時取得.

此時CP= BP=

,則

故滿足PB+2PC=AC+1時,t的最大值為.

3)由題可得,AC==BC=3,點P運動路程為t,點M運動路程為t,點N運動路程為2t

2tt=6,解得t=6,則運動6秒后N追上M

①追上前():MN=6+t2t=6t

時,MP=t+3+t=2t+3,則2t+3=2(6t),解得

時,MP= t+3+(6t)=9,則9=2(6t),解得,不滿足條件舍去;

②追上后():MN=2t6t =t6

時,MP=9t+t=9,則9=2(t6),解得,不滿足條件舍去,

時,MP= t9+t=2t9,則2t9=2(t6),無解;

綜上所述,t值為.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,△ABC中,AD平分∠BACDGBC且平分BCDEABEDFACF

1)判斷BECF的數量關系,并說明理由;

2)如果AB=8AC=6,求AEBE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】若規定這樣一種運算:ab=(|ab|+a+b),例如:23=(|23|+2+3)=3

1)求34和(-3-2)的值;

2)將1,2,3,…,5050個自然數,任意分為25,每組兩個數,現將每組的兩個數中任一數值記作a,另一個記作b,代入代數式(|ab|+a+b)中進行計算,求出其結果,25組數代入后可求得25個值,求這25個值的和的最大值是_____.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖①,在四邊形ABCD中,ABCDB=90°,點PBC邊上,當∠APD=90° 時,可知ABP∽△PCD.(不要求證明)

1)探究:如圖②,在四邊形ABCD中,點PBC邊上,當∠B=C=APD時,求證:ABP∽△PCD

2)拓展:如圖③,在ABC中,點P是邊BC的中點,點DE分別在邊ABAC上若∠B=C=DPE=45°BC=8CE=6,則DE的長為   

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】公園的門票價格規定如下表:

購票張數

1 50

51 100

101 150

150 張以上

每張票的價格

12

10

8

超過 150 張的部分 7

某校七年級(1)(2)兩個班共 104 人,其中(1)班 40 多人,不足 50 人,經估算,如果兩個班都以班為單位購票,則一共應付 1136 元,問:

(1)若兩班聯合起來作為一個團體購票,可省多少錢?

(2)兩班學生各有多少人?

(3)若七年級(3)班有 n 人(46<n<55)與(1,2)班一起去游園,某商家贊助,支付三個班的所有門票費,則該商家最少花費 元(用含 n 的式子表示)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖:在ABC中,BECF分別是ACAB兩邊上的高,在BE上截取BD=AC,在CF的延長線上截取CG=AB,連接ADAG

1)求證:AD=AG

2ADAG的位置關系如何,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,平行四邊形ABCD的邊ABx軸上,點C的坐標為(﹣54),點Dy軸的正半軸上,經過點A的直線yx1y軸交于點E,將直線AE沿y軸向上平移nn0)個單位長度后,得到直線l,直線l經過點C時停止平移.

1)點A的坐標為   ,點B的坐標為   

2)若直線ly軸于點F,連接CF,設△CDF的面積為S(這里規定:線段是面積為0的三角形),求Sn之間的函數關系式,并寫出n的取值范圍;

3)易知AEAD于點A,若直線l交折線ADDC于點P,當△AEP為直角三角形時,請直接寫出n的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1、2,已知四邊形ABCD為正方形,在射線AC上有一動點P,作PEAD(或延長線)于E,作PFDC(或延長線)于F,作射線BP交EF于G.

(1)在圖1中,設正方形ABCD的邊長為2,四邊形ABFE的面積為y,AP=x,求y關于x的函數表達式;

(2)結論:GBEF對圖1,圖2都是成立的,請任選一圖形給出證明;

(3)請根據圖2證明:FGC∽△PFB.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,把邊長為2的等邊三角形△ABC沿直線BC向右平移,使點B與點C重合,得到△DCE,連接BD,交AC于點F

1)證明:AC⊥BD

2)求線段BD的長。

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 欧美一级在线 | 国产精彩视频 | 一区二区三区在线观看视频 | 伊人小视频 | 欧美午夜在线 | 午夜精品久久久久久久久久久久久 | 婷婷久久五月天 | 欧美一级全黄 | 日韩成人精品在线 | 欧美三级| 最新日韩av | 亚洲免费综合 | 久久久久久综合 | 久久精品免费观看 | 热久久久| 国产精品日本一区二区不卡视频 | 亚洲成人在线视频播放 | 蜜桃视频在线观看www社区 | 中文字幕一区二区三区乱码在线 | 亚洲精品视频在线 | 美女一级 | 色婷婷综合网 | 亚洲日韩欧美一区二区在线 | 欧美视频精品 | 91在线一区 | 成人免费在线视频观看 | 国产视频精品视频 | 免费v片在线观看 | 午夜免费观看网站 | 欧美99 | 成人精品一区二区三区中文字幕 | 久久99久久久久 | 色综合久久网 | 一级黄色国产 | 久久精品视频久久 | 成人午夜电影网 | 青草成人免费视频 | 麻豆一区一区三区四区 | 日本xxxwww | 精品久久久久久久久久久 | 手机看片169 |