【題目】如圖,在Rt△ABC中,∠C=90°,BC=6 cm,AC=8 cm,將△BCD沿BD折疊,使點C落在AB邊的C′點處,那么△ADC′的面積是________.
【答案】6 cm2
【解析】
試題先根據勾股定理得到AB=10cm,再根據折疊的性質得到DC=DC′,BC=BC′=6cm,則AC′=4cm,設DC=xcm,在Rt△ADC′中根據勾股定理列方程求得x的值,然后根據三角形的面積公式計算即可.
∵∠C=90°,BC=6cm,AC=8cm,
∴AB=10cm,
∵將△BCD沿BD折疊,使點C落在AB邊的C′點,
∴△BCD≌△BC′D,
∴∠C=∠BC′D=90°,DC=DC′,BC=BC′=6cm,
∴AC′=AB-BC′=4cm,
設DC=xcm,則AD=(8-x)cm,
在Rt△ADC′中,AD2=AC′2+C′D2,
即(8-x)2=x2+42,解得x=3,
∵∠AC′D=90°,
∴△ADC′的面積═×AC′×C′D=
×4×3=6(cm2).
科目:初中數學 來源: 題型:
【題目】如圖①,在正方形ABCD中,P是對角線AC上的一點,點E在BC的延長線上,且PE=PB.
(1)求證:△BCP≌△DCP;
(2)求證:∠DPE=∠ABC;
(3)把正方形ABCD改為菱形,其它條件不變(如圖②),若∠ABC=58°,則∠DPE=度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小東根據學習函數的經驗,對函數y= 圖象與性質進行了探究,下面是小東的探究過程,請補充完整,并解決相關問題:
(1)函數y= 的自變量x的取值范圍是;
(2)如表是y與x的幾組對應值.
x | … | ﹣2 | ﹣1 | ﹣ | 0 | | 1 | | 2 | | 3 | 4 | … |
y | … | | | | 2 | | 4 | | 2 | | | m | … |
表中m的值為;
(3)如圖,在平面直角坐標系中,描出了以上表中各對對應值為坐標的點,根據描出的點,畫出函數y= 的大致圖象;
(4)結合函數圖象,請寫出函數y= 的一條性質.
(5)解決問題:如果函數y= 與直線y=a的交點有2個,那么a的取值范圍是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,在等腰直角三角形BCD中,∠BDC=90°, BF平分∠DBC,與CD相交于點F,延長BD到A,使DA=DF.
(1)求證:△FBD≌△ACD;
(2)延長BF交AC于點E,且BE⊥AC,求證:CE=BF;
(3)在(2)的條件下,H是BC邊的中點,連接DH,與BE相交于點G,如圖②. 試探索CE,GE,BG之間的數量關系,并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,AB=AC=2,∠BAC=45°,△AEF是由△ABC繞點A按逆時針方向旋轉得到的,連接BE、CF相交于點D.
(1)求證:BE=CF;
(2)當四邊形ABDF為菱形時,求CD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】⑴ 閱讀理解:我們知道在直角三角形中,有無數組勾股數,例如:5、12、13;9、40、41;……但其中也有一些特殊的勾股數,例如:3、4、5;是三個連續正整數組成的勾股數.
解決問題:① 在無數組勾股數中,是否存在三個連續偶數能組成勾股數?
答: ,若存在,試寫出一組勾股數: .
② 在無數組勾股數中,是否還存在其它的三個連續正整數能組成勾股數?若存在,求出勾股數,若不存在,說明理由.
③ 在無數組勾股數中,是否存在三個連續奇數能組成勾股數?若存在,求出勾股數,若不存在,說明理由.
⑵ 探索升華:是否存在銳角△ABC三邊也為連續正整數;且同時還滿足:∠B>∠C>∠A;∠ABC=2∠BAC?若存在,求出△ABC三邊的長;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com