日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

正方形ABCD邊長為4,M、N分別是BC、CD上的兩個動點,當(dāng)M點在BC上運動時,保持AM和MN垂直.
(1)證明:Rt△ABM∽Rt△MCN;
(2)設(shè)BM=x,梯形ABCN的面積為y,求y與x之間的函數(shù)關(guān)系式;當(dāng)M點運動到什么位置時,四邊形ABCN的面積最大,并求出最大面積;
(3)當(dāng)M點運動到什么位置時Rt△ABM∽Rt△AMN,求此時x的值.

【答案】分析:(1)要證三角形ABM和MCN相似,就需找出兩組對應(yīng)相等的角,已知了這兩個三角形中一組對應(yīng)角為直角,而∠BAM和∠NMC都是∠AMB的余角,因此這兩個角也相等,據(jù)此可得出兩三角形相似.
(2)根據(jù)(1)的相似三角形,可得出AB,BM,MC,NC的比例關(guān)系式,已知了AB=4,BM=x,可用BC和BM的長表示出CM,然后根據(jù)比例關(guān)系式求出CN的表達式.這樣直角梯形的上下底和高都已得出,可根據(jù)梯形的面積公式得出關(guān)于y,x的函數(shù)關(guān)系式.然后可根據(jù)函數(shù)的性質(zhì)得出y的最大值即四邊形ABCN的面積的最大值,以及此時對應(yīng)的x的值,也就可得出BM的長.
(3)已知了這兩個三角形中相等的對應(yīng)角是∠ABM和∠AMN,如果要想使Rt△ABM∽Rt△AMN,那么兩組直角邊就應(yīng)該對應(yīng)成比例,即,根據(jù)(1)的相似三角形可得出,因此BM=MC,M是BC的中點.即x=2.
解答:(1)證明:在正方形ABCD中,AB=BC=CD=4,∠B=∠C=90°,
∵AM⊥MN,
∴∠AMN=90°,
∴∠CMN+∠AMB=90°.
在Rt△ABM中,∠MAB+∠AMB=90°,
∴∠CMN=∠MAB,
∴Rt△ABM∽Rt△MCN.

(2)解:∵Rt△ABM∽Rt△MCN,
,即

∴y=S梯形ABCN=+4)•4
=-x2+2x+8
=-(x-2)2+10,
當(dāng)x=2時,y取最大值,最大值為10.

(3)解:∵∠B=∠AMN=90°,
∴要使△ABM∽△AMN,必須有
由(1)知
=
∴BM=MC,
∴當(dāng)點M運動到BC的中點時,△ABM∽△AMN,此時x=2.
點評:本題主要考查了相似三角形的判定和性質(zhì)以及二次函數(shù)的綜合應(yīng)用,根據(jù)相似三角形得出與所求的條件相關(guān)的線段成比例是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)正方形ABCD邊長為4,M、N分別是BC、CD上的兩個動點,當(dāng)M點在BC上運動時,保持AM和MN垂直.
(1)證明:Rt△ABM∽Rt△MCN;
(2)設(shè)BM=x,梯形ABCN的面積為y,求y與x之間的函數(shù)關(guān)系式;當(dāng)M點運動到什么位置時,四邊形ABCN的面積最大,并求出最大面積;
(3)當(dāng)M點運動到什么位置時Rt△ABM∽Rt△AMN,求此時x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD邊長為2cm,以點B為圓心,AB的長為半徑作弧
AC
,則圖中陰影部分的面積為(  )
A、(4-π)cm2
B、(8-π)cm2
C、(2π-4)cm2
D、(π-2)cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,正方形ABCD邊長為2,點E在CB的延長線上,BD=BE,則tan∠BAE的值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:正方形ABCD邊長為4cm,E,F(xiàn)分別為CD,BC的中點,動點P在線段AB上從B?A以2cm/精英家教網(wǎng)s的速度運動,同時動點Q在線段FC上從F?C以1cm/s的速度運動,動點G在PC上,且∠EGC=∠EQC,連接PD.設(shè)運動時間為t秒.
(1)求證:△CQE∽△APD;
(2)問:在運動過程中CG•CP的值是否發(fā)生改變?如果不變,請求這個值;若改變,請說明理由;
(3)當(dāng)t為何值時,△CGE為等腰三角形并求出此時△CGE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

正方形ABCD邊長為4,M、N分別是BC、CD上的兩個動點,當(dāng)M點在BC上運動時,保持AM和MN垂直,
(1)證明:Rt△ABM∽Rt△MCN;
(2)設(shè)BM=x,梯形ABCN的面積為y,求y與x之間的函數(shù)關(guān)系式;
(3)梯形ABCN的面積是否可能等于11?為什么?

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 国产成人精品免费视频大全最热 | 久久久精品欧美一区二区免费 | 看毛片软件 | 精品国产乱码久久久久久久软件 | av毛片| 99精品在线观看 | 亚洲一区欧美一区 | 久久久免费看 | aaa日韩| 亚洲啊v | 日本免费一区二区在线观看 | 国产精品久久久久久久久久东京 | 欧洲另类二三四区 | 国产a区| 久热精品视频 | 日韩 欧美 自拍 | 久久久久久久久久国产 | 亚洲综合色自拍一区 | 依人久久 | 神马久久久久久 | 中文字幕在线看 | 99精品网站| 日韩精品一区二区三区在线播放 | 日本成人黄色网址 | 日韩精品视频在线播放 | 国产亚洲成av人片在线观看 | 91香蕉视频 | 天堂成人国产精品一区 | 北条麻妃一区二区三区在线观看 | 91在线中文字幕 | 姐姐在线观看动漫第二集免费 | 成人在线免费观看 | 亚洲精品久久久久久国产精华液 | 米奇狠狠狠狠8877 | www.久久.com| 91亚洲精品乱码久久久久久蜜桃 | 久久99久久精品视频 | 日韩一区二区在线观看 | 中文 日韩 欧美 | 中文日韩在线 | 亚洲欧美一区二区三区在线 |