
解:(1)令x=0,得y=-2,
∴C(0,-2),
∵∠ACB=90°,CO⊥AB,
∴△AOC∽△COB,
∴OA•OB=OC
2∴OB=

,
∴m=4,
將A(-1,0),B(4,0)代入y=ax
2+bx-2,
得

,
∴拋物線的解析式為y=

x
2-

x-2.
(2)D(1,n)代入y=

x
2-

x-2,得n=-3,
由得


∴E(6,7)
過(guò)E作EH⊥x軸于H,則H(6,0)
∴AH=EH=7
∴∠EAH=45°
過(guò)D作DF⊥x軸于F,則F(1,0)
∴BF=DF=3
∴∠DBF=45°
∴∠EAH=∠DBF=45°
∴∠DBH=135°,
90°<∠EBA<135°
則點(diǎn)P只能在點(diǎn)B的左側(cè),有以下兩種情況:
①若△DBP
1∽△EAB,則

∴BP
1=

=

=

∴OP
1=4-

=

,
∴P
1(

,0).
②若△DBP
2∽△BAE,則

∴BP
2=

=

=

∴OP
2=

-4=

∴P
2(-

,0).
綜合①、②,得點(diǎn)P的坐標(biāo)為:P
1(

,0)或P
2(-

,0).
(3)

或

.
如圖所示:先作△BPD的外接圓,過(guò)P作直徑PM,連接DM,
∵∠PMD=∠PBD,∠DFP=∠PDM,
∴△PMD和△FBD相似,

∴

,
∴PD=

=

=

,
DF=3,
BD=

=3

,
∴PM=

=

,
∴△BPD的外接圓的半徑=

;
同理可求出當(dāng)P點(diǎn)在x軸的負(fù)半軸上時(shí),△BPD的外接圓的半徑=

.
分析:(1)根據(jù)拋物線的解析式可知C點(diǎn)坐標(biāo)為(0,-2),即OC=2,由于∠ACB=90度,根據(jù)射影定理OC
2=OA•AB,可求出AB的長(zhǎng),進(jìn)而可求出B點(diǎn)的坐標(biāo),也就求出了m的值,然后將A、B的坐標(biāo)代入拋物線中即可求出其解析式.
(2)可先根據(jù)拋物線的解析式和直線AE的解析式求出E點(diǎn)和D點(diǎn)的坐標(biāo),經(jīng)過(guò)求解不難得出∠FAB=∠DBO=45°,因此本題要分兩種情況進(jìn)行討論:①∠DPB=∠ABE;②∠PDB=∠ABE.可根據(jù)對(duì)應(yīng)的相似三角形得出的成比例線段求出OP的長(zhǎng),進(jìn)而可求出P點(diǎn)的坐標(biāo).
(3)以求△BP
1D的外接圓半徑為列進(jìn)行說(shuō)明:先作△BPD的外接圓,過(guò)P作直徑PM,連接DM,那么不難得出△PMD和△FBD相似,可得出

,可先求出DP,DF,BD的長(zhǎng),而PM是圓的直徑,由此可求出△BPD的外接圓的半徑.
點(diǎn)評(píng):本題考查二次函數(shù)解析式的確定、函數(shù)圖象交點(diǎn)、三角形相似以及△外接圓的半徑的求法等知識(shí)及綜合應(yīng)用知識(shí)、解決問(wèn)題的能力.
(要注意區(qū)別三角形內(nèi)切圓和外接圓半徑求法的不同:三角形內(nèi)切圓半徑通常用公式法求解.而三角形外接圓半徑通常要通過(guò)構(gòu)建相似三角形來(lái)求解).