日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
閱讀與理解:
三角形的中線的性質:三角形的中線等分三角形的面積,
即如圖1,AD是△ABC中BC邊上的中線,
S△ABD=S△ACD=
1
2
S△ABC

理由:∵BD=CD,∴S△ABD=
1
2
BD×AH=
1
2
CD×AH=S△ACD
=
1
2
S△ABC
,
即:等底同高的三角形面積相等.
操作與探索
在如圖2至圖4中,△ABC的面積為a.
(1)如圖2,延長△ABC的邊BC到點D,使CD=BC,連接DA.若△ACD的面積為S1,則S1=
 
(用含a的代數式表示);
(2)如圖3,延長△ABC的邊BC到點D,延長邊CA到點E,使CD=BC,AE=CA,連接DE.若△DEC的面積為S2,則S2=
 
(用含a的代數式表示),并寫出理由;
(3)在圖3的基礎上延長AB到點F,使BF=AB,連接FD,FE,得到△DEF(如圖4).若陰影部分的面積為S3,則S3=
 
(用含a的代數式表示).
精英家教網
拓展與應用
如圖5,已知四邊形ABCD的面積是a,E、F、G、H分別是AB、BC、CD的中點,求圖中陰影部分的面積?精英家教網
分析:(1)根據等底同高的三角形面積相等,可知道△ACD的面積和△ABC的面積相等.
(2)根據等底同高的三角形面積相等,可知道△ABC=S△ACD=S△AED=a,從而可求出結果.
(3)陰影部分的面積為三個三角形,這三個三角形面積相等,從(2)可知都為2a.可求出陰影部分的面積.
(4)連接:AO,BO,CO,DO,根據等底同高的三角形面積相等,可求出結果.
解答:解:(1)a;

(2)2a;
連接AD,∵S△ABC=S△ACD=S△AED=a,∴S△DCE=2a精英家教網

(3)6a
拓展與應用:
連接:AO,BO,CO,DO,∵S△AOE=S△B0E=
1
2
S△AOB
,
同理:S△BOF=S△COF=
1
2
S△COB
,S△COG=S△DOG=
1
2
S△COD
,S△DOH=S△AOH=
1
2
S△AOD

陰影部分面積=
1
2
SABCD=
1
2
a
點評:本題考查三角形的面積,關鍵知道等底同高的面積相等,從而可求出解.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:閱讀理解

22、閱讀與理解:
圖1是邊長分別為a和b(a>b)的兩個等邊三角形紙片ABC和C′DE疊放在一起(C與C′重合)的圖形.
操作與證明:
(1)操作:固定△ABC,將△C′DE繞點C按順時針方向旋轉30°,連接AD,BE,如圖2;在圖2中,線段BE與AD之間具有怎樣的大小關系?證明你的結論;
(2)操作:若將圖1中的△C′DE,繞點C按順時針方向任意旋轉一個角度α,連接AD,BE,如圖3;在圖3中,線段BE與AD之間具有怎樣的大小關系?證明你的結論;
猜想與發現:
根據上面的操作過程,請你猜想當α為多少度時,線段AD的長度最大是多少?當α為多少度時,線段AD的長度最小是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

閱讀與理解:
三角形的中線的性質:三角形的中線等分三角形的面積,
即如圖1,AD是△ABC中BC邊上的中線,
數學公式
理由:∵BD=CD,∴數學公式=數學公式
即:等底同高的三角形面積相等.
操作與探索
在如圖2至圖4中,△ABC的面積為a.
(1)如圖2,延長△ABC的邊BC到點D,使CD=BC,連接DA.若△ACD的面積為S1,則S1=______(用含a的代數式表示);
(2)如圖3,延長△ABC的邊BC到點D,延長邊CA到點E,使CD=BC,AE=CA,連接DE.若△DEC的面積為S2,則S2=______(用含a的代數式表示),并寫出理由;
(3)在圖3的基礎上延長AB到點F,使BF=AB,連接FD,FE,得到△DEF(如圖4).若陰影部分的面積為S3,則S3=______(用含a的代數式表示).

拓展與應用
如圖5,已知四邊形ABCD的面積是a,E、F、G、H分別是AB、BC、CD的中點,求圖中陰影部分的面積?

查看答案和解析>>

科目:初中數學 來源:2008年河北省中考數學模擬試卷(二)(解析版) 題型:解答題

閱讀與理解:
圖1是邊長分別為a和b(a>b)的兩個等邊三角形紙片ABC和C′DE疊放在一起(C與C′重合)的圖形.
操作與證明:
(1)操作:固定△ABC,將△C′DE繞點C按順時針方向旋轉30°,連接AD,BE,如圖2;在圖2中,線段BE與AD之間具有怎樣的大小關系?證明你的結論;

(2)操作:若將圖1中的△C′DE,繞點C按順時針方向任意旋轉一個角度α,連接AD,BE,如圖3;在圖3中,線段BE與AD之間具有怎樣的大小關系?證明你的結論;
猜想與發現:
根據上面的操作過程,請你猜想當α為多少度時,線段AD的長度最大是多少?當α為多少度時,線段AD的長度最小是多少?

查看答案和解析>>

科目:初中數學 來源:2009年安徽省初中畢業學業模擬考試數學試卷(一)(解析版) 題型:解答題

(2008•房山區一模)閱讀與理解:
圖1是邊長分別為a和b(a>b)的兩個等邊三角形紙片ABC和C′DE疊放在一起(C與C′重合)的圖形.
操作與證明:
(1)操作:固定△ABC,將△C′DE繞點C按順時針方向旋轉30°,連接AD,BE,如圖2;在圖2中,線段BE與AD之間具有怎樣的大小關系?證明你的結論;

(2)操作:若將圖1中的△C′DE,繞點C按順時針方向任意旋轉一個角度α,連接AD,BE,如圖3;在圖3中,線段BE與AD之間具有怎樣的大小關系?證明你的結論;
猜想與發現:
根據上面的操作過程,請你猜想當α為多少度時,線段AD的長度最大是多少?當α為多少度時,線段AD的長度最小是多少?

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 亚洲天堂字幕 | 欧美色综合一区二区三区 | 成人毛片在线视频 | 久久福利影院 | 亚洲综合在线一区 | xxx在线观看| 国产精品久热 | www久久99| 欧美色综合一区二区三区 | 先锋影音av资源站 | 韩国av一区二区 | 亚洲免费人成在线视频观看 | 国产日韩一区二区 | 成人免费crm在线观看 | 日韩成人在线观看 | 久久亚洲天堂 | 国产精品无码久久久久 | 中文字幕亚洲电影 | 精品国产一区二区三区小蝌蚪 | 日韩视频一区 | 免费的黄色 | 国产精品久久久久久久久动漫 | 久久久久国产精品一区二区 | 欧美午夜视频在线观看 | 五月激情站 | 久久久爽爽爽美女图片 | 国产精品国产精品国产专区不片 | 日韩国产激情 | 黄色tv| 北条麻妃一区二区在线 | 欧美一区二区三区免费 | 日韩成年视频 | 日本三级黄色录像 | 免费黄色看片 | 国产精品精品视频一区二区三区 | 青草视频在线播放 | 热久久这里只有精品 | 91视频免费看网站 | 99av| 在线观看中文视频 | 久久se精品一区精品二区 |