日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

如左圖,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+c(a>0)的圖象的頂點(diǎn)為D點(diǎn),與y軸交于C點(diǎn),與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0),OB=OC,tan∠ACO=
13

(1)求這個(gè)二次函數(shù)的表達(dá)式.
(2)經(jīng)過C、D兩點(diǎn)的直線,與x軸交于點(diǎn)E,在該拋物線上是否存在這樣的點(diǎn)F,使以點(diǎn)A、C、E、F為頂點(diǎn)的四邊形為平行四邊形?若存在,請求出點(diǎn)F的坐標(biāo);若不存在,請說明理由.
(3)若平行于x軸的直線與該拋物線交于M、N兩點(diǎn),且以MN為直徑的圓與x軸相切,求該圓半徑的長度.
(4)如圖,若點(diǎn)G(2,y)是該拋物線上一點(diǎn),點(diǎn)P是直線AG下方的拋物線上一動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△APG的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和△APG的最大面積.
精英家教網(wǎng)
分析:(1)求二次函數(shù)的表達(dá)式,需要求出A、B、C三點(diǎn)坐標(biāo).已知B點(diǎn)坐標(biāo),且OB=OC,可知C(0,3),tan∠ACO=
1
3
,則A坐標(biāo)為(-1,0).將A,B,C三點(diǎn)坐標(biāo)代入關(guān)系式,可求得二次函數(shù)的表達(dá)式.
(2)假設(shè)存在這樣的點(diǎn)F(m,n),已知拋物線關(guān)系式,求出頂點(diǎn)D坐標(biāo),今兒求出直線CD,E是直線與x軸交點(diǎn),可得E點(diǎn)坐標(biāo).四邊形AECF為平行四邊形,則CE∥AF,則兩直線斜率相等,可列等式(1),CE=AF,可列等式(2),F(xiàn)在拋物線上,為等式(3),根據(jù)這三個(gè)等式,即可求出m、n是否存在.
(3)分情況討論,當(dāng)圓在x軸上方時(shí),根據(jù)題意可知,圓心必定在拋物線的對稱軸上,設(shè)圓半徑為r,則N的坐標(biāo)為(r+1,r),將其代入拋物線解析式,可求出r的值.當(dāng)圓在x軸的下方時(shí),方法同上,只是N的坐標(biāo)變?yōu)椋╮+1,-r),代入拋物線解析式即可求解.
(4)G在拋物線上,代入解析式求出G點(diǎn)坐標(biāo),設(shè)點(diǎn)P的坐標(biāo)為(x,y),即(x,x2-2x-3)已知點(diǎn)A、G坐標(biāo),可求出線段AG的長度,以及直線AG的解析式,再根據(jù)點(diǎn)到直線的距離求出P到直線的距離,即為三角形AGP的高,從而用x表示出三角形的面積,然后求當(dāng)面積最大時(shí)x的值.
解答:精英家教網(wǎng)解:(1)方法一:由已知得:C(0,-3),A(-1,0)(1分)
將A、B、C三點(diǎn)的坐標(biāo)代入
a-b+c=0
9a+3b+c=0
c=-3
(2分)
解得:
a=1
b=-2
c=-3
(3分)
所以這個(gè)二次函數(shù)的表達(dá)式為:y=x2-2x-3(3分)
方法二:由已知得:C(0,-3),A(-1,0)(1分)
設(shè)該表達(dá)式為:y=a(x+1)(x-3)(2分)
將C點(diǎn)的坐標(biāo)代入得:a=1(3分)
所以這個(gè)二次函數(shù)的表達(dá)式為:y=x2-2x-3(3分)
(注:表達(dá)式的最終結(jié)果用三種形式中的任一種都不扣分)

(2)方法一:存在,F(xiàn)點(diǎn)的坐標(biāo)為(2,-3)(4分)
理由:易得D(1,-4),
所以直線CD的解析式為:y=-x-3
∴E點(diǎn)的坐標(biāo)為(-3,0)(4分)
由A、C、E、F四點(diǎn)的坐標(biāo)得:AE=CF=2,AE∥CF
∴以A、C、E、F為頂點(diǎn)的四邊形為平行四邊形
∴存在點(diǎn)F,坐標(biāo)為(2,-3)(5分)
方法二:易得D(1,-4),所以直線CD的解析式為:y=-x-3
∴E點(diǎn)的坐標(biāo)為(-3,0)(4分)
∵以A、C、E、F為頂點(diǎn)的四邊形為平行四邊形
∴F點(diǎn)的坐標(biāo)為(2,-3)或(-2,-3)或(-4,3)
代入拋物線的表達(dá)式檢驗(yàn),只有(2,-3)符合
∴存在點(diǎn)F,坐標(biāo)為(2,-3)(5分)

(3)如圖,①當(dāng)直線MN在x軸上方時(shí),
設(shè)圓的半徑為R(R>0),則N(R+1,R),
代入拋物線的表達(dá)式,解得R=
1+
17
2
(6分)
②當(dāng)直線MN在x軸下方時(shí),
設(shè)圓的半徑為r(r>0),
則N(r+1,-r),
代入拋物線的表達(dá)式,精英家教網(wǎng)
解得r=
-1+
17
2
(7分)
∴圓的半徑為
1+
17
2
-1+
17
2
.(7分)

(4)過點(diǎn)P作y軸的平行線與AG交于點(diǎn)Q,
易得G(2,-3),直線AG為y=-x-1.(8分)
設(shè)P(x,x2-2x-3),則Q(x,-x-1),
PQ=-x2+x+2.S△APG=S△APQ+S△GPQ=
1
2
(-x2+x+2)×3(9分)
當(dāng)x=
1
2
時(shí),△APG的面積最大
此時(shí)P點(diǎn)的坐標(biāo)為(
1
2
,-
15
4
),S△APG的最大值為
27
8
.(10分)
點(diǎn)評:此題考查二次函數(shù)與x軸,y軸坐標(biāo)求法,頂點(diǎn)坐標(biāo)公式,二次函數(shù)圖象與平行四邊形,圓相結(jié)合,重點(diǎn)考查了平行四邊形,圓的性質(zhì)特征.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2009-2010學(xué)年蘇科版九年級(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

如左圖,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+c(a>0)的圖象的頂點(diǎn)為D點(diǎn),與y軸交于C點(diǎn),與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0),OB=OC,tan∠ACO=
(1)求這個(gè)二次函數(shù)的表達(dá)式.
(2)經(jīng)過C、D兩點(diǎn)的直線,與x軸交于點(diǎn)E,在該拋物線上是否存在這樣的點(diǎn)F,使以點(diǎn)A、C、E、F為頂點(diǎn)的四邊形為平行四邊形?若存在,請求出點(diǎn)F的坐標(biāo);若不存在,請說明理由.
(3)若平行于x軸的直線與該拋物線交于M、N兩點(diǎn),且以MN為直徑的圓與x軸相切,求該圓半徑的長度.
(4)如圖,若點(diǎn)G(2,y)是該拋物線上一點(diǎn),點(diǎn)P是直線AG下方的拋物線上一動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△APG的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和△APG的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年湖南省長沙市長郡中學(xué)理科班入學(xué)數(shù)學(xué)試卷(二)(解析版) 題型:解答題

如左圖,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+c(a>0)的圖象的頂點(diǎn)為D點(diǎn),與y軸交于C點(diǎn),與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0),OB=OC,tan∠ACO=
(1)求這個(gè)二次函數(shù)的表達(dá)式.
(2)經(jīng)過C、D兩點(diǎn)的直線,與x軸交于點(diǎn)E,在該拋物線上是否存在這樣的點(diǎn)F,使以點(diǎn)A、C、E、F為頂點(diǎn)的四邊形為平行四邊形?若存在,請求出點(diǎn)F的坐標(biāo);若不存在,請說明理由.
(3)若平行于x軸的直線與該拋物線交于M、N兩點(diǎn),且以MN為直徑的圓與x軸相切,求該圓半徑的長度.
(4)如圖,若點(diǎn)G(2,y)是該拋物線上一點(diǎn),點(diǎn)P是直線AG下方的拋物線上一動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△APG的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和△APG的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年北京市中考數(shù)學(xué)模擬試卷(三)(解析版) 題型:解答題

如左圖,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+c(a>0)的圖象的頂點(diǎn)為D點(diǎn),與y軸交于C點(diǎn),與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0),OB=OC,tan∠ACO=
(1)求這個(gè)二次函數(shù)的表達(dá)式.
(2)經(jīng)過C、D兩點(diǎn)的直線,與x軸交于點(diǎn)E,在該拋物線上是否存在這樣的點(diǎn)F,使以點(diǎn)A、C、E、F為頂點(diǎn)的四邊形為平行四邊形?若存在,請求出點(diǎn)F的坐標(biāo);若不存在,請說明理由.
(3)若平行于x軸的直線與該拋物線交于M、N兩點(diǎn),且以MN為直徑的圓與x軸相切,求該圓半徑的長度.
(4)如圖,若點(diǎn)G(2,y)是該拋物線上一點(diǎn),點(diǎn)P是直線AG下方的拋物線上一動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△APG的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和△APG的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年江蘇省蘇州市立達(dá)、一中聯(lián)合中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

如左圖,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+c(a>0)的圖象的頂點(diǎn)為D點(diǎn),與y軸交于C點(diǎn),與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0),OB=OC,tan∠ACO=
(1)求這個(gè)二次函數(shù)的表達(dá)式.
(2)經(jīng)過C、D兩點(diǎn)的直線,與x軸交于點(diǎn)E,在該拋物線上是否存在這樣的點(diǎn)F,使以點(diǎn)A、C、E、F為頂點(diǎn)的四邊形為平行四邊形?若存在,請求出點(diǎn)F的坐標(biāo);若不存在,請說明理由.
(3)若平行于x軸的直線與該拋物線交于M、N兩點(diǎn),且以MN為直徑的圓與x軸相切,求該圓半徑的長度.
(4)如圖,若點(diǎn)G(2,y)是該拋物線上一點(diǎn),點(diǎn)P是直線AG下方的拋物線上一動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△APG的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和△APG的最大面積.

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 日本一区二区不卡视频 | 日韩免费高清 | 日韩中文在线播放 | 黄色的网站在线 | 91久久久久久久久久久久久久 | 国产精品夜夜春夜夜爽久久电影 | 日本三级网站在线观看 | 欧美一区二区三区在线视频 | 国产精品久久久久久久一区探花 | 日韩一级网站 | 欧美9999 | 91伦理片| 欧美一区2区三区4区公司二百 | 日韩大片| 一区二区免费视频观看 | 国产精品九九九 | 国产精品美女视频免费观看软件 | 久久国产精品免费一区二区三区 | 日韩一级片在线观看 | 久久久久女人精品毛片九一韩国 | 欧美与黑人午夜性猛交久久久 | 成人免费在线视频 | 激情开心成人网 | 三级黄色网址 | 国产精品成人国产乱一区 | 午夜免费视频网站 | 精品黑人一区二区三区久久 | 国产精品久久久久久久久久久久冷 | 欧美一级片 | 欧美视频在线观看一区 | 国产野精品久久久久久久不卡 | 日韩一级在线免费观看 | 日韩性猛交 | 国产精品国产三级国产aⅴ原创 | 老妇激情毛片免费 | 无毒黄网 | 色片在线看| 国产美女永久免费无遮挡 | 久久精品美女视频 | 日韩在线视频中文字幕 | 五月激情综合网 |