【題目】如圖,在平面直角坐標系中,直線l的函數表達式為y=x,點O1的坐標為(1,0),以O1為圓心,O1O為半徑畫圓,交直線l于點P1,交x軸正半軸于點O2;以O2為圓心,O2O為半徑畫圓,交直線l于點P2,交x軸正半軸于點O3;以O3為圓心,O3O為半徑畫圓,交直線l于點P3,交x軸正半軸于點O4;…按此做法進行下去,其中的長___________.
【答案】
【解析】
連接P1O1,P2O2,P3O3,易求得PnOn垂直于x軸,可得的長為
圓的周長,再找出圓半徑的規律即可得出結果.
解:連接P1O1,P2O2,P3O3,P4O4,…,如圖所示:
∵P1是⊙1上的點,
∴P1O1=OO1,
∵直線l解析式為y=x,
∴∠P1OO1=45°,
∴△P1OO1為等腰直角三角形,即P1O1⊥x軸,
同理,PnOn垂直于x軸,
∴的長為
圓的周長,
∵以O1為圓心,O1O為半徑畫圓,交x軸正半軸于點O2,以O2為圓心,O2O為半徑畫圓,交x軸正半軸于點O3,以此類推,
∴OOn=2n-1,
∴=
×2πOOn=
π×2n-1=2n-2π,
∴n=2020時,= 22020-2π=22018π,
故答案為:22018π.
科目:初中數學 來源: 題型:
【題目】經銷商購進某種商品,當購進量在20千克~50千克之間(含20千克和50千克)時,每千克進價是5元;當購進量超過50千克時,每千克進價是4元.此種商品的日銷售量y(千克)受銷售價x(元/千克)的影響較大,該經銷商試銷一周后獲得如下數據:
x(元/千克) | 5 | 5.5 | 6 | 6.5 | 7 |
y(千克) | 90 | 75 | 60 | 45 | 30 |
解答下列問題:
(1)求出y關于x的一次函數表達式:
(2)若每天購進的商品能夠全部銷售完,且當日銷售價不變,日銷售利潤為w元,那么銷售價定為多少時,該經銷商銷售此種商品的當日利潤最大?最大利潤為多少元?此時購進量應為多少千克?(注:當日利潤=(銷售價-進貨價)×日銷售量).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知等腰三角形ABC的底角為30°,以BC為直徑的⊙O與底邊AB交于點D,過D作DE⊥AC,垂足為E.
(1)證明:DE為⊙O的切線;
(2)連接OE,若BC=4,求△OEC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,E、F分別是AB、CD的中點,EG⊥AF,FH⊥CE,垂足分別為G,H,設AG=x,圖中陰影部分面積為y,則y與x之間的函數關系式是( 。
A. y=3x2 B. y=4
x2 C. y=8x2 D. y=9x2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線與
軸的正半軸交于點
.
(1)求點的坐標和該拋物線的對稱軸.
(2)點在
軸的正半軸上,
軸交拋物線于點
、
(點
在點
的左側),設
,
①當是
的中點時,求
的值;
②連結,設
與
的周長之差為
,求
關于
的函數表達式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)問題發現
如圖1,在Rt△ABC和Rt△CDE中,∠ACB=∠DCE=90°,∠CAB=∠CDE=45°,點D是線段AB上一動點,連接BE.
填空: ①的值為 ;②∠DBE的度數為 .
(2)類比探究
如圖2,在Rt△ABC和Rt△CDE中,∠ACB=∠DCE=90°,∠CAB=∠CDE=60°,點D是線段AB上一動點,連接BE.請判斷的值及∠DBE的度數,并說明理由.
(3)拓展延伸
如面3,在(2)的條件下,將點D改為直線AB上一動點,其余條件不變,取線段DE的中點M,連接BM、CM,若AC=2,則當△CBM是直角三角形時,線段BE的長是多少?請直接寫出答案.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數與反比例函數
的圖象交于A(m,6),B(3,n)兩點.
(1)求一次函數的解析式;
(2)求的面積;
(3)根據圖象直接寫出的x的取值范圍
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線與軸交于
兩點,與
軸交于點
,點
的坐標是
,
為拋物線上的一個動點,過點
作
軸于點
,交直線
于點
,拋物線的對稱軸是直線
.
(1)求拋物線的函數表達式和直線的解析式;
(2)若點在第二象限內,且
,求
的面積;
(3)在(2)的條件下,若為直線
上一點,是否存在點
,使
為等腰三角形?若存在,直接寫出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,△ABC是圓O的內接三角形,過點O作OD⊥AB與點D,連接OA,點E是AC的中點,延長EO交BC于點F.
(1)求證:△CEF∽△ODA.
(2)若,△ABC是不是等腰三角形?并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com