【題目】如圖,Rt△ABC中,∠C=Rt∠,AB=2,∠B=30°,正六邊形DEFGHI完全落在Rt△ABC內,且DE在BC邊上,F在AC邊上,H在AB邊上,則正六邊形DEFGHI的邊長為_____,過I作A1C1∥AC,然后在△A1C1B內用同樣的方法作第二個正六邊形,按照上面的步驟繼續下去,則第n個正六邊形的邊長為_____.
科目:初中數學 來源: 題型:
【題目】如圖,點I是△ABC的內心,AI的延長線交邊BC于點D,交△ABC的外接圓于點E.
(1)求證:IE=BE;
(2)若IE=4,AE=8,求DE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=2x+6與反比例函數y=(k>0)的圖象交于點A(1,m),與x軸交于點B,平行于x軸的直線y=n(0<n<6)交反比例函數的圖象于點M,交AB于點N,連接BM.
(1)求m的值和反比例函數的表達式;
(2)觀察圖象,直接寫出當x>0時不等式2x+6﹣<0的解集;
(3)直線y=n沿y軸方向平移,當n為何值時,△BMN的面積最大?最大值是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在四邊形ABCD中,點E為AB邊上的一點,點F為對角線BD上的一點,且EF⊥AB.
(1)若四邊形ABCD為正方形.
①如圖①,請直接寫出AE與DF的數量關系______________;
②將△EBF繞點B逆時針旋轉到圖②所示的位置,連接AE,DF,猜想AE與DF的數量關系并說明理由;
(2)如圖③,若四邊形ABCD為矩形,BC=mAB,其他條件都不變,將△EBF繞點B逆時針旋轉α(0°<α<90°)得到△E′BF′,連接AE′,DF′,請在圖③中畫出草圖,并求出AE′與DF′的數量關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線的圖象與x軸交于A、B兩點(點A在點B的左邊),與y軸交于點C,點D為拋物線的頂點.
(1)求A、B、C的坐標;
(2)點M為線段AB上一點(點M不與點A、B重合),過點M作x軸的垂線,與直線AC交于點E,與拋物線交于點P,過點P作PQ∥AB交拋物線于點Q,過點Q作QN⊥x軸于點N.若點P在點Q左邊,當矩形PQMN的周長最大時,求△AEM的面積;
(3)在(2)的條件下,當矩形PMNQ的周長最大時,連接DQ.過拋物線上一點F作y軸的平行線,與直線AC交于點G(點G在點F的上方).若FG=DQ,求點F的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C、D為⊙O上不同于A、B的兩點,∠ABD=2∠BAC,連接CD,過點C作CE⊥DB,垂足為E,直徑AB與CE的延長線相交于F點.
(1)求證:CF是⊙O的切線;
(2)當BD=,sinF=
時,求OF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AB=10,AC=8,將線段AB繞點A按逆時針方向旋轉90°到線段AD.△EFG由△ABC沿CB方向平移得到,且直線EF過點D.
(I)求∠1的大小.
(Ⅱ)求AE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】近年來,“在初中數學教學候總使用計算器是否直接影響學生計算能力的發展”這一問題受到了廣泛關注,為此,某校隨機調查了n名學生對此問題的看法(看法分為三種:沒有影響,影響不大,影響很大),并將調查結果 繪制成如下不完整的統計表和扇形統計圖,根據統計圖表提供的信息,解答下列問題:
n名學生對使用計算器影響計算能力的發展看法人數統計表
看法 | 沒有影響 | 影響不大 | 影響很大 |
學生人數(人) | 40 | 60 | m |
(1)求n的值;
(2)統計表中的m= ;
(3)估計該校1800名學生中認為“影響很大”的學生人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線與
軸交
、
兩點(
點在
點左側),直線
與拋物線交于
、
兩點,其中
點的橫坐標為2.
(1)求、
兩點的坐標及直線
的函數表達式;
(2)是線段
上的一個動點,過
點作
軸的平行線交拋物線于
點,求線段
長度的最大值;
(3)點是拋物線上的動點,在
軸上是否存在點
,使
、
、
、
四個點為頂點的四邊形是平行四邊形?如果存在,寫出所有滿足條件的
點坐標(請直接寫出點的坐標,不要求寫過程);如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com