日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
定義[a,b,c]為函數y=ax2+bx+c的特征數,下面給出特征數為[2k,1-k,-1-k],對于任意負實數k,當x<m時,y隨x的增大而增大,則m的最大整數值是   
【答案】分析:先根據特征數為[2k,1-k,-1-k]求出函數的解析式,再由對于任意負實數k,當x<m時,y隨x的增大而增大可知-≥m,故可得出m的取值范圍,進而得出m的最大整數值.
解答:解:∵函數y=ax2+bx+c的特征數為[2k,1-k,-1-k],
∴二次函數的解析式為:y=2kx2+(1-k)x-1-k,
∵對于任意負實數k,當x<m時,y隨x的增大而增大,
∵k為負數,即k<0,
∴2k<0,即函數y=2kx2+(1-k)x-1-k表示的是開口向下的二次函數,
∴在對稱軸的左側,y隨x的增大而增大,
∵對于任意負實數k,當x<m時,y隨x的增大而增大,
∴x=-=->0,
∴m≤-=-
∵k<0,
∴->0,
-
∵m≤-對一切k<0均成立,
∴m≤-的最小值,
∴m的最大整數值是m=0.
故答案為:0.
點評:本題考查的是二次函數的性質,根據題意得出二次函數的解析式是解答此題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

6、定義(p,q)為一次函數y=px+q的特征數.若特征數是(2,k-2)的一次函數為正比例函數,則k的值是(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

定義[a,b,c]為函數y=ax2+bx+c的特征數,下面給出特征數為[2m,1-4m,2m-1]的函數的一些結論:①當m=
1
2
時,函數圖象的頂點坐標是(
1
2
,-
1
4
)
;②當m=-1時,函數在x>1時,y隨x的增大而減小;③無論m取何值,函數圖象都經過同一個點.其中所有的正確結論有
 
.(填寫正確結論的序號)

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•江干區一模)定義[a,b,c]為函數y=ax2+bx+c的特征數,下面給出特征數為[2k,1-k,-1-k],對于任意負實數k,當x<m時,y隨x的增大而增大,則m的最大整數值是
0
0

查看答案和解析>>

科目:初中數學 來源: 題型:

定義{a,b,c}為函數y=ax2+bx+c的“特征數”.如:函數y=x2-2x+3的“特征數”是{1,-2,3},函數y=2x+3的“特征數”是{0,2,3},函數y=-x的“特征數”是{0,-1,0}
(1)將“特征數”是{1,-4,1}的函數的圖象向下平移2個單位,得到一個新函數圖象,求這個新函數圖象的解析式;
(2)“特征數”是{0,-
3
3
3
}
的函數圖象與x、y軸分別交點C、D,“特征數”是{0,-
3
3
}
的函數圖象與x軸交于點E,點O是原點,判斷△ODC與△OED是否相似,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

定義[a,b,c]為函數y=ax2+bx+c的特征數,下面給出特征數為[2m,1-m,-1-m]的函數的一些結論:
①當m=-1時,函數圖象的頂點坐標是(
1
2
,4); 
②當m>0時,函數圖象截x軸所得的線段長度大于
3
2

③當m<0時,函數在x<
1
4
時,y隨x的增大而增大;
④當m≠0時,函數圖象經過x軸上一個定點.  
其中正確的結論有
②③④
②③④
.(只需填寫序號)

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 四虎黄色影院 | 一区二区三区免费看 | 久草视| 久久久久久久久久久蜜桃 | 久久国产一区视频 | 久久aⅴ国产欧美74aaa | 亚洲一区二区三区视频 | 狠狠做深爱婷婷久久综合一区 | 亚洲欧美国产一区二区 | 激情网在线观看 | 美女中文字幕视频 | 欧美综合国产精品久久丁香 | 日韩精品一区二区三区免费视频 | 日韩一级免费在线观看 | 欧美成人精品一区 | 四虎最新影视 | k8久久久一区二区三区 | 99国产精品久久久久久久 | 欧美3区| 国产精品一区二区在线看 | 成人作爱视频 | 久久9久 | 欧美一级一区 | 国产日韩精品视频 | 91欧美 | 欧美日韩免费看 | 精品国产一区二区三区久久影院 | 韩日精品 | 日韩欧美在线观看视频网站 | 欧美三级一区 | 精品久久一| 欧美精品福利视频 | 国产精品欧美一区二区三区 | 久在线| 99久久婷婷国产综合精品 | 免费高潮视频95在线观看网站 | 一本一道久久a久久精品蜜桃 | 中文字幕久久精品 | 亚洲欧美中文日韩在线v日本 | 国产精品99视频 | 亚洲精品在线播放 |