【題目】如圖1,△ABC中,∠ACB=90°,AC=BC=6,M點在邊AC上,且CM=2,過M點作AC的垂線交AB邊于E點,動點P從點A出發沿AC邊向M點運動,速度為1個單位/秒,當動點P到達M點時,運動停止.連接EP、EC,設運動時間為t.在此過程中:
(1)當t=1時,求EP的長度;
(2)當t為何值時,△EPC是等腰三角形?
(3)如圖2,若點N是線段ME上一點,且MN=3,點Q是線段AE上一動點,連接PQ、PN、NQ得到△PQN,請直接寫出△PQN周長的最小值.
【答案】(1)5;(2)當t=1或2或(6-2)時,△PEC是等腰三角形;(3)△PQN周長的最小值是
.
【解析】
(1)根據平行線的性質列出比例式,求出EP;
(2)分EP=EC、PC=PE、CP=CE三種情況,根據等腰三角形的概念、勾股定理計算即可;
(3)作點N關于AC的對稱點N′,關于AB的對稱點N′′,連接N′N′′交AC于P,交AB于Q,連接N′′E,根據勾股定理求出N′N′′,得到答案.
解:(1)∵∠ACB=90°,EM⊥AC,
∴EM∥BC,
∴,
∴ME=4,
當t=1秒時,AP=1,
則PM=3,
∴EP=;
(2)當EP=EC時,PM=MC,
∴4-t=2,
解得,t=2,
當PC=PE時,(4-t)2+42=(6-t)2,
解得,t=1,
當CP=CE時,22+42=(6-t)2,
解得,t1=6+(舍去),t2=6-
,
當t=1或2或(6-2)時,△PEC是等腰三角形;
(3)作點N關于AC的對稱點N′,關于AB的對稱點N′′,連接N′N′′交AC于P,交AB于Q,連接N′′E,則△PQN即為周長最小的三角形;
由題意得,N′E=7,N′′E=NE=1,
∵ME∥BC,
∴∠AEN=∠B=45°,
∴∠N′′EN=90°,
∴N′N′′=,
則△PQN周長的最小值是.
科目:初中數學 來源: 題型:
【題目】如圖所示,直線a經過正方形ABCD的頂點A,分別過正方形的頂點B、D作BF⊥a于點F,DE⊥a于點E,若DE=8,BF=5,則EF的長為__.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是一個大長方形剪去一個小長方形后形成的圖形,已知動點P以2cm/s的速度沿圖形邊框按B-C-D-E-F-A的路徑移動,相應的ΔABP的面積S(cm)與時間t(s)之間的關系如圖,若AB=8cm,解答下列問題:
(1)BC的長是多少?
(2)圖象中的a是幾?
(3)六邊形的面積是多少?
(4)圖象中的b是幾?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,∠MON=90°,矩形ABCD的頂點A、B分別在邊OM,ON上,當B在邊ON上運動時,A隨之在OM上運動,矩形ABCD的形狀保持不變,其中AB=2,BC=1,運動過程中,點D到點O的最大距離為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知矩形ABCD中,E是AD邊上的一個動點,點F,G,H分別是BC,BE,CE的中點.
(1)求證:△BGF≌△FHC;
(2)設AD=a,當四邊形EGFH是正方形時,求矩形ABCD的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖,點C是線段AB上一點,點M、N分別是AC、BC的中點.
①若AC=8cm,CB=6cm,請求出線段MN的長;
②若點C滿足AC+CB=acm,其它條件不變,你能猜想MN的長度嗎?請說明理由;
(2)若C在線段AB的延長線上,且滿足AC﹣BC=bcm,M、N分別為AC、BC的中點,你能猜想MN的長度嗎?請畫出圖形,寫出你的結論,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,CD⊥AB,垂足為D,點E在BC上,EF⊥AB,垂足為F.
(1)CD與EF平行嗎?為什么?
(2)如果∠1=∠2,且∠3=120°,求∠ACB的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在每個小正方形的邊長為1的網格中,A,B為格點
(Ⅰ)AB的長等于__
(Ⅱ)請用無刻度的直尺,在如圖所示的網格中求作一點C,使得CA=CB且△ABC的面積等于,并簡要說明點C的位置是如何找到的__________________
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com