日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

圖1是邊長分別為數(shù)學(xué)公式和3的兩個等邊三角形紙片ABC和C′D′E′疊放在一起(C與C′重合).
(1)操作:固定△ABC,將△C′D′E′繞點C順時針旋轉(zhuǎn)30°得到△CDE,連接AD,BE,CE的延長線交AB于F(圖2).
探究:在圖2中,線段BE與AD之間有怎樣的大小關(guān)系?試證明你的結(jié)論;
(2)操作:將圖2中的△CDE,在線段CF上沿著CF方向以每秒1個單位的速度平移,平移后的△CDE設(shè)為△PQR(圖3).
探究:設(shè)△PQR移動的時間為x秒,△PQR與△AFC重疊部分的面積為y,求y與x之間的函數(shù)解析式,并寫出函數(shù)自變量x的取值范圍.

解:(1)BE=AD.
∵△ABC,△CDE都是等邊三角形,
∴AC=BC,CD=CE,∠ACB=∠ECD=60°
∵∠BCE=30°,
∴∠ACE=30°,
∴∠ACD=30°
∴△ADC≌△BEC(SAS),
∴BE=AD.

(2)設(shè)PR、RQ分別交AC于G、H,QC=x,
∵由(1)可知∠ACF=30°,∠PQR=60°,
∴∠CHQ=30°,
∴QH=QC,∠RHG=∠CHQ=30°,
∴∠RGH=90°,RH=3-QH=3-QC=3-x,
∴RG=(3-x),GH=(3-x),
所以SRt△GHR=RG•GH=(3-x)2
而∵△C′D′E′的邊長為3,得出S△PQR=
∴重疊部分面積y=-(3-x)2
即:y=-+x+(0≤x≤3).
分析:(1)BE=AD,尋找證明△ADC≌△BEC(SAS)的條件.
(2)設(shè)PR、RQ分別交AC于G、H,QC=x,由題意易得∠RGH=90°,RH=3-QH=3-QC=3-x,分析可知,△GRH是30°的直角三角形,解直角三角形可求GR,GH,可表示△GRH的面積,用△PRQ的面積-△GRH的面積.
點評:此題綜合性較強(qiáng),考查了全等三角形的判定、等邊三角形的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:第25章《圖形的變換》中考題集(17):25.2 旋轉(zhuǎn)變換(解析版) 題型:解答題

圖1是邊長分別為和3的兩個等邊三角形紙片ABC和C′D′E′疊放在一起(C與C′重合).
(1)操作:固定△ABC,將△C′D′E′繞點C順時針旋轉(zhuǎn)30°得到△CDE,連接AD,BE,CE的延長線交AB于F(圖2).
探究:在圖2中,線段BE與AD之間有怎樣的大小關(guān)系?試證明你的結(jié)論;
(2)操作:將圖2中的△CDE,在線段CF上沿著CF方向以每秒1個單位的速度平移,平移后的△CDE設(shè)為△PQR(圖3).
探究:設(shè)△PQR移動的時間為x秒,△PQR與△AFC重疊部分的面積為y,求y與x之間的函數(shù)解析式,并寫出函數(shù)自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第26章《圓》中考題集(08):26.1 旋轉(zhuǎn)(解析版) 題型:解答題

圖1是邊長分別為和3的兩個等邊三角形紙片ABC和C′D′E′疊放在一起(C與C′重合).
(1)操作:固定△ABC,將△C′D′E′繞點C順時針旋轉(zhuǎn)30°得到△CDE,連接AD,BE,CE的延長線交AB于F(圖2).
探究:在圖2中,線段BE與AD之間有怎樣的大小關(guān)系?試證明你的結(jié)論;
(2)操作:將圖2中的△CDE,在線段CF上沿著CF方向以每秒1個單位的速度平移,平移后的△CDE設(shè)為△PQR(圖3).
探究:設(shè)△PQR移動的時間為x秒,△PQR與△AFC重疊部分的面積為y,求y與x之間的函數(shù)解析式,并寫出函數(shù)自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第23章《旋轉(zhuǎn)》中考題集(06):23.1 圖形的旋轉(zhuǎn)(解析版) 題型:解答題

圖1是邊長分別為和3的兩個等邊三角形紙片ABC和C′D′E′疊放在一起(C與C′重合).
(1)操作:固定△ABC,將△C′D′E′繞點C順時針旋轉(zhuǎn)30°得到△CDE,連接AD,BE,CE的延長線交AB于F(圖2).
探究:在圖2中,線段BE與AD之間有怎樣的大小關(guān)系?試證明你的結(jié)論;
(2)操作:將圖2中的△CDE,在線段CF上沿著CF方向以每秒1個單位的速度平移,平移后的△CDE設(shè)為△PQR(圖3).
探究:設(shè)△PQR移動的時間為x秒,△PQR與△AFC重疊部分的面積為y,求y與x之間的函數(shù)解析式,并寫出函數(shù)自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《圖形的平移》(02)(解析版) 題型:解答題

(2007•呼倫貝爾)圖1是邊長分別為和3的兩個等邊三角形紙片ABC和C′D′E′疊放在一起(C與C′重合).
(1)操作:固定△ABC,將△C′D′E′繞點C順時針旋轉(zhuǎn)30°得到△CDE,連接AD,BE,CE的延長線交AB于F(圖2).
探究:在圖2中,線段BE與AD之間有怎樣的大小關(guān)系?試證明你的結(jié)論;
(2)操作:將圖2中的△CDE,在線段CF上沿著CF方向以每秒1個單位的速度平移,平移后的△CDE設(shè)為△PQR(圖3).
探究:設(shè)△PQR移動的時間為x秒,△PQR與△AFC重疊部分的面積為y,求y與x之間的函數(shù)解析式,并寫出函數(shù)自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《三角形》(16)(解析版) 題型:解答題

(2007•呼倫貝爾)圖1是邊長分別為和3的兩個等邊三角形紙片ABC和C′D′E′疊放在一起(C與C′重合).
(1)操作:固定△ABC,將△C′D′E′繞點C順時針旋轉(zhuǎn)30°得到△CDE,連接AD,BE,CE的延長線交AB于F(圖2).
探究:在圖2中,線段BE與AD之間有怎樣的大小關(guān)系?試證明你的結(jié)論;
(2)操作:將圖2中的△CDE,在線段CF上沿著CF方向以每秒1個單位的速度平移,平移后的△CDE設(shè)為△PQR(圖3).
探究:設(shè)△PQR移動的時間為x秒,△PQR與△AFC重疊部分的面積為y,求y與x之間的函數(shù)解析式,并寫出函數(shù)自變量x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 国产成人亚洲综合 | 国产在线一区二区 | 日韩爽妇网| 久久精品二区 | 狠狠做深爱婷婷久久综合一区 | 欧美国产精品一区二区 | 91欧美在线 | h在线视频 | 欧美精品99| 羞羞视频官网 | aaa久久| 国产精品久久久久久久久久免费 | 精品成人 | 一区二区免费 | 日韩欧美在线观看一区二区三区 | 91精品国产综合久久婷婷香蕉 | 日韩精品在线一区 | www..99re| 91精品国产综合久久久久久漫画 | 九九99久久 | 中文字幕免费 | 欧美成a | 国产精品视频久久久久久 | 久久天堂网 | 成人做爰www免费看视频网站 | 国内久久精品 | 久久久精品999 | 国产美女视频网站 | 国产乱轮在线视频 | 国产探花在线看 | yy6080久久伦理一区二区 | 久久久久综合 | 91碰碰| 日韩欧美中文字幕视频 | 久久h | 精品一区二区三区久久 | 国产日批 | 天天精品 | 涩涩片影院 | 国产成人61精品免费看片 | 天天澡天天狠天天天做 |