【題目】如圖,直線PQ∥MN,點C是PQ、MN之間(不在直線PQ,MN上)的一個動點.
(1)若∠1與∠2都是銳角,如圖甲,請直接寫出∠C與∠1,∠2之間的數量關系;
(2)若把一塊三角尺(∠A=30°,∠C=90°)按如圖乙方式放置,點D,E,F是三角尺的邊與平行線的交點,若∠AEN=∠A,求∠BDF的度數;
(3)將圖乙中的三角尺進行適當轉動,如圖丙,直角頂點C始終在兩條平行線之間,點G在線段CD上,連接EG,且有∠CEG=∠CEM,求值.
【答案】(1)∠C=∠1+∠2,理由見解析;(2)60°;(3)2
【解析】
(1)過C作CD∥PQ,依據平行線的性質,即可得出∠C=∠1+∠2;
(2)根據(1)中的結論可得,∠C=∠MEC+∠PDC=90°,再根據對頂角相等即可得出結論;
(3)設∠CEG=∠CEM=x,得到∠GEN=180°2x,再根據(1)中的結論可得∠CDP=90°∠CEM=90°x,再根據對頂角相等即可得出∠BDF=90°x,據此可得的值.
(1)∠C=∠1+∠2.
理由:如圖,過C作CD∥PQ,
∵PQ∥MN,
∴PQ∥CD∥MN,
∴∠1=∠ACD,∠2=∠BCD,
∴∠ACB=∠ACD+∠BCD=∠1+∠2.
(2)∵∠AEN=∠A=30°,
∴∠MEC=30°,
由(1)可得,∠C=∠MEC+∠PDC=90°,
∴∠PDC=90°﹣∠MEC=60°,
∴∠BDF=∠PDC=60°;
(3)設∠CEG=∠CEM=x,則∠GEN=180°﹣2x,
由(1)可得,∠C=∠CEM+∠CDP,
∴∠CDP=90°﹣∠CEM=90°﹣x,
∴∠BDF=90°﹣x,
∴=
=2.
科目:初中數學 來源: 題型:
【題目】如圖,形如量角器的半圓O的直徑DE=12cm,形如三角板的△ABC中,∠ACB=90°,∠ABC=30°, BC=12cm,半圓O以 2cm/s 的速度從左向右運動,在運動過程中,點 D 、E 始終在直線BC 上.設運動時間為t(s) ,當t=0s時,半圓O在△ABC的左側,OC=8cm。
(1)當t =(s)時,⊙O與AC所在直線第一次相切,點 C 到直線 AB 的距離為;
(2)當 t為何值時,直線 AB 與半圓O所在的圓相切;
(3)當△ABC的一邊所在直線與圓O相切時,若⊙O與△ABC有重疊部分,求重疊部分的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】請認真觀察圖形,解答下列問題:
(1)根據圖中條件,試用兩種不同方法表示兩個陰影圖形的面積的和.
方法1: ;
方法2: .
(2)從中你能發現什么結論,請用等式表示出來: ;
(3)利用(2)中結論解決下面的問題:若,
,求
的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平行四邊形ABCD的頂點C在y軸正半軸上,CD平行于x軸,直線AC交x軸于點E,BC⊥AC,連接BE,反比例函數 (x>0)的圖象經過點D.已知S△BCE=2,則k的值是( )
A.2
B.﹣2
C.3
D.4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD的頂點B,C在x軸的正半軸上,反比例函數y= (k≠0)在第一象限的圖象經過頂點A(m,2)和CD邊上的點E(n,
),過點E的直線l交x軸于點F,交y軸于點G(0,﹣2),則點F的坐標是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某物流公司引進A、B兩種機器人用來搬運某種貨物,這兩種機器人充滿電后可以連續搬運5小時,A種機器人于某日0時開始搬運,過了1小時,B種機器人也開始搬運,如圖,線段OG表示A種機器人的搬運量yA(千克)與時間x(時)的函數圖象,線段EF表示B種機器人的搬運量yB(千克)與時間x(時)的函數圖象.根據圖象提供的信息,解答下列問題:
(1)求yB關于x的函數解析式;
(2)如果A、B兩種機器人連續搬運5個小時,那么B種機器人比A種機器人多搬運了多少千克?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小亮家與姥姥家相距24km,小亮8:00從家出發,騎自行車去姥姥家媽媽8:30從家出發,乘車沿相同路線去姥姥家
在同一直角坐標系中,小亮和媽媽的行進路程與北京時間的函數圖象如圖所示,根據圖象得到如下結論,其中錯誤的是
A. 9:00媽媽追上小亮B. 媽媽比小亮提前到達姥姥家
C. 小亮騎自行車的平均速度是D. 媽媽在距家13km處追上小亮
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數y=ax2+bx+c(a,b,c為常數,且a≠0)中的x與y的部分對應值如下表:
X | ﹣1 | 0 | 1 | 3 |
y | ﹣1 | 3 | 5 | 3 |
下列結論:
⑴ac<0;
⑵當x>1時,y的值隨x值的增大而減小.
⑶3是方程ax2+(b﹣1)x+c=0的一個根;
⑷當﹣1<x<3時,ax2+(b﹣1)x+c>0.
其中正確的個數為( )
A.4個
B.3個
C.2個
D.1個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線p:y=ax2+bx+c的頂點為C,與x軸相交于A、B兩點(點A在點B左側),點C關于x軸的對稱點為C′,我們稱以A為頂點且過點C′,對稱軸與y軸平行的拋物線為拋物線p的“夢之星”拋物線,直線AC′為拋物線p的“夢之星”直線.若一條拋物線的“夢之星”拋物線和“夢之星”直線分別是y=x2+2x+1和y=2x+2,則這條拋物線的解析式為 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com