【題目】計算: ﹣3tan30°+(π﹣4)0
.
【答案】解: ﹣3tan30°+(π﹣4)0
=
=
【解析】本題涉及零指數冪、負整數指數冪、特殊角的三角函數值、二次根式化簡四個考點.在計算時,需要針對每個考點分別進行計算,然后根據實數的運算法則計算.
【考點精析】利用零指數冪法則和整數指數冪的運算性質對題目進行判斷即可得到答案,需要熟知零次冪和負整數指數冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數);aman=am+n(m、n是正整數);(am)n=amn(m、n是正整數);(ab)n=anbn(n是正整數);am/an=am-n(a不等于0,m、n為正整數);(a/b)n=an/bn(n為正整數).
科目:初中數學 來源: 題型:
【題目】如圖,田亮同學用剪刀沿直線將一片平整的樹葉剪掉一部分,發現剩下樹葉的周長比原樹葉的周長要小,能正確解釋這一現象的數學知識是( )
A.垂線段最短
B.經過一點有無數條直線
C.經過兩點,有且僅有一條直線
D.兩點之間,線段最短
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個袋子中裝有3個紅球和2個黃球,這些球的形狀、大小.質地完全相同,在看不到球的條件下,隨機從袋子里同時摸出2個球,其中2個球的顏色相同的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在邊長為12的正方形ABCD中,E是邊CD的中點,將△ADE沿AE對折至△AFE,延長EF交BC于點G.則BG的長為( )
A.5
B.4
C.3
D.2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,D點在拋物線y= x2+bx+c上,且OB=OC,AB=5,tan∠ACB=
,M是拋物線與y軸的交點.
(1)求直線AC和拋物線的解析式;
(2)動點P從A到D,同時動點Q從C到A都以每秒1個單位的速度運動.問:當P運動到何處時,△APQ是直角三角形?
(3)在(2)中當P運動到某處時,四邊形PDCQ的面積最小,求此時△CMQ的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知在△ABC中,∠B=90°,以AB上的一點O為圓心,以OA為半徑的圓交AC于點D,交AB于點E.
(1)求證:ACAD=ABAE;
(2)如果BD是⊙O的切線,D是切點,E是OB的中點,當BC=2時,求AC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為8cm,E、F、G分別是AB、CD、DA上的動點,且AE=BF=CG=DH.
(1)求證:四邊形EFGH是正方形;
(2)判斷直線EG是否經過某一定點,說明理由;
(3)求四邊形EFGH面積的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com