【題目】在△ABC中,AB=17,BC=21,AC=10,動點P從點C出發,沿著CB運動,速度為每秒3個單位,到達點B時運動停止,設運動時間為t秒,請解答下列問題:
(1)求BC上的高;
(2)當t為何值時,△ACP為等腰三角形?
【答案】(1)8;(2);4;
.
【解析】
(1)過點A作AD⊥BC于點D,設CD=x,則BD=21﹣x,再根據勾股定理求出x的值,進而可得出AD的長;
(2)分AC=PC,AP=AC及AP=PC三種情況進行討論.
(1)過點A作AD⊥BC于點D,設CD=x,則BD=21-x,
∵△ABD與△ACD均為直角三角形,
∴AB2-BD2=AC2-CD2,即172-(21-x)2=102-x2,解得x=6,
∴AD==
=8,
故答案為:8;
(2)當AC=PC時,
∵AC=10,
∴AC=PC=10,
∴t=秒;
當AP=AC時,過點A作AD⊥BC于點D,由(1)知,CD=6,
∴PC=12,
∴t==4秒;
當AP=PC時,過點P作PE⊥AC于點E,
∵AC=10,
∴CE=5,
∴,即
=
,解得PC=
,
(秒)
綜上所述,t=秒或4秒或
秒,
故答案為:;4;
.
科目:初中數學 來源: 題型:
【題目】如圖,菱形ABCD的對角線AC、BD相交于點O,過點D作DE∥AC,且DE=AC,連接CE、OE,連接AE交OD于點F.
(1)求證:OE=CD;
(2)若菱形ABCD的邊長為8,∠ABC=60°,求AE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校八年級兩個班,各選派10名學生參加學校舉行的“漢字聽寫”大賽.各參賽選手成績的數據分析如下表所示,則以下判斷錯誤的是( 。
A. 八(2)班的總分高于八(1)班 B. 八(2)班的成績比八(1)班穩定
C. 八(2)班的成績集中在中上游 D. 兩個班的最高分在八(2)班
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知點,
,點C是直線AB上異于點B的任一點,現以BC為一邊在AB右側作正方形BCDE,射線OC與直線DE交于點P,若點C的橫坐標為m.
求直線AB的函數表達式.
若點C在第一象限,且點C為OP的中點,求m的值.
若點C為OP的三等分點
即點C分OP成1:2的兩條線段
,請直接寫出點C的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,下列結論中不正確的是( )
A. 當AB=BC時,它是菱形 B. 當AC⊥BD時,它是菱形
C. 當∠ABC=90°時,它是矩形 D. 當AC=BD時,它是正方形
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.下列結論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結論的個數是( 。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,我們已經學過:點C將線段AB分成兩部分,如果,那么稱點C為線段AB的黃金分割點.某校的數學拓展性課程班,在進行知識拓展時,張老師由黃金分割點拓展到“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個面積為S的圖形分成兩部分,這兩部分的面積分別為S1,S2,如果
,那么稱直線l為該圖形的黃金分割線.
如圖2,在△ABC中,∠A=36°,AB=AC,∠C的平分線交AB于點D.
(1)證明點D是AB邊上的黃金分割點;
(2)證明直線CD是△ABC的黃金分割線.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線y=x2+bx+c與x軸交于A,B兩點,與y軸交于點C,O是坐標原點,點A的坐標是(﹣1,0),點C的坐標是(0,﹣3).
(1)求拋物線的函數表達式;
(2)求直線BC的函數表達式和∠ABC的度數;
(3)P為線段BC上一點,連接AC,AP,若∠ACB=∠PAB,求點P的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com